Previous |  Up |  Next

Article

Keywords:
non-oscillation; deviating non-delay equation; singular boundary value problem
Summary:
We obtain conditions for existence and (almost) non-oscillation of solutions of a second order linear homogeneous functional differential equations \begin {equation*} u''(x)+\sum _i p_i(x) u'(h_i(x))+\sum _i q_i(x) u(g_i(x)) = 0 \end {equation*} without the delay conditions $h_i(x),g_i(x)\le x$, $i=1,2,\ldots $, and $$ u''(x)+\int _0^{\infty }u'(s){\rm d}_sr_1(x,s)+\int _0^{\infty } u(s){\rm d}_sr_0(x,s) = 0. $$
References:
[1] Agarwal, R. P., Berezansky, L., Braverman, E., Domoshnitsky, A. I.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, Berlin (2012). DOI 10.1007/978-1-4614-3455-9 | MR 2908263 | Zbl 1253.34002
[2] Azbelev, N. V.: Zeros of solutions of a second-order linear differential equation with time-lag. Differ. Equations 7 (1973), 865-873. MR 0289893 | Zbl 0272.34094
[3] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.: Introduction to the Theory of Functional Differential Equations. Methods and Applications. Contemporary Mathematics and Its Applications 3. Hindawi Publishing Corporation, New York (2007). MR 2319815 | Zbl 1202.34002
[4] Berezansky, L., Braverman, E.: Some oscillation problems for a second order linear delay differential equation. J. Math. Anal. Appl. 220 (1998), 719-740. DOI 10.1006/jmaa.1997.5879 | MR 1614948 | Zbl 0915.34064
[5] Domoshnitskij, A. I.: Extension of Sturm's theorem to apply to an equation with time-lag. Differ. Equations 19 (1983), 1099-1105 translation from Differ. Uravn. 19 1983 1475-1482. MR 0718547 | Zbl 0538.34038
[6] Hartman, P.: Ordinary Differential Equations. Birkhäuser, Basel (1982). MR 0658490 | Zbl 0476.34002
[7] Kamenev, I. V.: Necessary and sufficient conditions for the disconjugacy of the solutions of a second order linear equation. Differ. Uravn. 12 (1976), 751-753 Russian. MR 0412516 | Zbl 0335.34016
[8] Kondrat'ev, V. A.: Sufficient conditions for non-oscillatory or oscillatory nature of solutions of equation $y''+ p (x) y = 0$. Dokl. Akad. Nauk SSSR 113 (1957), 742-745 Russian. MR 0091393 | Zbl 0088.06104
[9] Krasnosel'skij, M. A., Zabreiko, P. P., Pustylnik, E. I., Sobolevskii, P. E.: Integral Operators in Spaces of Summable Functions. Monographs and Textbooks on Mechanics of Solids and Fluids. Noordhoff International Publishing, Leyden (1976). MR 0385645 | Zbl 0312.47041
[10] Kreĭn, M. G., Rutman, M. A.: Linear operators leaving invariant a cone in a Banach space. Usp. Mat. Nauk 3 (1948), 3-95 Russian. MR 0027128 | Zbl 0030.12902
[11] Labovskii, S.: Little vibrations of an abstract mechanical system and corresponding eigenvalue problem. Funct. Differ. Equ. 6 (1999), 155-167. MR 1733234 | Zbl 1041.34050
[12] Labovskii, S., Shindiapin, A.: On existence of nontrivial solution of a singular functional differential equation. Funct. Differ. Equ. 5 (1998), 183-194. MR 1681191 | Zbl 1050.34518
[13] Labovskij, S. M.: A condition for the nonvanishing of the Wronskian of a fundamental system of solutions of a linear differential equation with a delayed argument. Differ. Equations 10 (1975), 316-319. MR 0380049 | Zbl 0315.34082
[14] Labovskij, S. M.: Constancy of the sign of the Wronskian of a fundamental system, of Cauchy's function, and of Green's function of a two-point boundary-value problem for an equation with delay. Differ. Equations 11 (1976), 1328-1335. MR 0397115 | Zbl 0347.34052
[15] Labovskij, S. M.: Positive solutions of linear functional-differential equations. Differ. Equations 20 (1984), 428-434 translation from Differ. Uravn. 20 1984 578-584. MR 0742813 | Zbl 0593.34064
[16] Labovskij, S. M.: Positive solutions of a two-point boundary-value problem for a singular linear functional equation. Differ. Equations 24 (1988), 1116-1123 translation from Differ. Uravn. 24 1988 1695-1704. MR 0972847 | Zbl 0675.34034
[17] Labovskiy, S.: On monotone solutions of a linear functional differential equation. Reports of The Extended Sessions of a Seminar of The I. N. Vekua Institute of Applied Mathematics, vol. 3, 1990, pp. 102-105.
[18] Labovskiy, S.: On existence of positive on semi-axis solutions for a second order deviating differential equations. Int. Miniconf. Qualitative Theory of Differential Equations and Applications, Moscow, 2013, pp. 190-207.
Partner of
EuDML logo