[1] Beneš, V., Večeřa, J., Pultar, M.:
Planar segment processes with reference mark distributions, modeling and simulation. Methodol. Comput. Appl. Probab. (2018), accepted.
DOI 10.1007/s11009-017-9608-x
[2] Blaszczyszyn, B., Yogeshwaran, D., Yukich, J. E.:
Limit theory for geometric statistics of point processes having fast decay of correlations. Preprint (2018), submitted to the Annals of Probab.
DOI
[3] Daley, D. J., Vere-Jones, D.:
An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods.
MR 1950431
[4] Dereudre, D.:
Introduction to the theory of Gibbs point processes. Preprint (2017), submitted.
DOI
[10] Schreiber, T., Yukich, J. E.:
Limit theorems for geometric functionals of Gibbs point processes. Ann. Inst. Henri Poincaré - Probab. et Statist. 49 (2013), 1158-1182.
DOI 10.1214/12-aihp500 |
MR 3127918
[12] Stucki, K., Schuhmacher, D.:
Bounds for the probability generating functional of a Gibbs point process. Adv. Appl. Probab. 46 (2014), 21-34.
DOI 10.1239/aap/1396360101 |
MR 3189046
[13] Torrisi, G. L.:
Probability approximation of point processes with Papangelou conditional intensity. Bernoulli 23 (2017), 2210-2256.
DOI 10.3150/16-bej808 |
MR 3648030