Previous |  Up |  Next

Article

Keywords:
$z$-ideal; ${\mathcal Z}_A$-ideal; $\Im_A$-ideal; $z$-filter; ${\mathcal Z}_A$-filter; $\Im_A$-filter; intermediate ring
Summary:
In this article, we investigate new topological descriptions for two well-known mappings ${\mathcal Z}_A$ and $\Im_A$ defined on intermediate rings $A(X)$ of $C(X)$. Using this, coincidence of each two classes of $z$-ideals, ${\mathcal Z}_A$-ideals and $\Im_A$-ideals of $A(X)$ is studied. Moreover, we answer five questions concerning the mapping $\Im_A$ raised in [J. Sack, S. Watson, {$C$ and $C^*$ among intermediate rings}, Topology Proc. {43} (2014), 69--82].
References:
[1] Aliabad A. R., Parsinia M.: Remarks on subrings of $C(X)$ of the form $I+C^*(X)$. Quaest. Math. 40 (2017), no. 1, 63–73. MR 3620980
[2] Aliabad A. R., Parsinia M.: $z_R$-ideals and $z_R^{\circ}$-ideals in subrings of $ {\mathbb R}^X$. to appear in Iranian J. Math. Sci. Inform.
[3] Byun H. L., Watson S.: Prime and maximal ideals in subrings of $C(X)$. Topology Appl. 40 (1991), no. 1, 45–62. DOI 10.1016/0166-8641(91)90057-S | MR 1114090 | Zbl 0732.54016
[4] Domínguez J. M., Gómez Pérez J.: Intersections of maximal ideals in algebras between $C^*(X)$ and $C(X)$. Iberoamerican Conf. on Topology and Its Applications, Morelia, 1997, Topology Appl. 98 (1999), no. 1–3, 149–165. MR 1719998
[5] Gillman L., Jerison M.: Rings of Continuous Functions. The University Series in Higher Mathematics, D. Van Nostrand Co., Princeton, New York, 1960. MR 0116199 | Zbl 0327.46040
[6] Mason G.: $z$-ideals and prime ideals. J. Algebra 26 (1973), 280–297. DOI 10.1016/0021-8693(73)90024-0 | MR 0321915
[7] Murray W., Sack J., Watson S.: $P$-spaces and intermediate rings of continuous functions. Rocky Mountain J. Math. 47 (2017), no. 8, 2757–2775. MR 3760317
[8] Panman P., Sack J., Watson S.: Correspondence between ideals and z-filters for rings of continuous functions between $C^*$ and $C$. Comment. Math. 52 (2012), no. 1, 11–20. MR 2977710
[9] Parsinia M.: Remarks on $LBI$-subalgebras of $C(X)$. Comment. Math. Univ. Carolin. 57 (2016), no. 2, 261–270. MR 3513449
[10] Parsinia M.: Remarks on intermediate $C$-rings of $C(X)$. Quaest. Math. (online 2017), 8 pages. MR 3836415
[11] Plank D.: On a class of subalgebras of $C(X)$ with applications to $\beta X\backslash X$. Fund. Math. 64 (1969), 41–54. DOI 10.4064/fm-64-1-41-54 | MR 0244953
[12] Redlin L., Watson S.: Maximal ideals in subalgebras of $C(X)$. Proc. Amer. Math. Soc. 100 (1987), no. 4, 763–766. MR 0894451 | Zbl 0622.54011
[13] Sack J., Watson S.: $C$ and $C^*$ among intermediate rings. Topology Proc. 43 (2014), 69–82. MR 3080750
[14] Sack J., Watson S.: Characterizing $C(X)$ among intermediate $C$-rings on $X$. Topology Proc. 45 (2015), 301–313. MR 3291114
Partner of
EuDML logo