Previous |  Up |  Next

Article

Keywords:
space of continuous functions; pointwise topology; homeomorphism of function spaces; uniform homeomorphism; ordinal number
Summary:
We conclude the classification of spaces of continuous functions on ordinals carried out by Górak [Górak R., {Function spaces on ordinals}, Comment. Math. Univ. Carolin. {46} (2005), no. 1, 93--103]. This gives a complete topological classification of the spaces $C_p([0,\alpha])$ of all continuous real-valued functions on compact segments of ordinals endowed with the topology of pointwise convergence. Moreover, this topological classification of the spaces $C_p([0,\alpha])$ completely coincides with their uniform classification.
References:
[1] Arhangel'skij A. V.: On linear homeomorphisms of function spaces. Sov. Math., Dokl. 25 (1982), 852–855; translation from Dokl. Akad. Nauk SSSR 264 (1982), 1289–1292 (Russian). MR 0664477
[2] Baars J. A., de Groot J. A. M.: On Topological and Linear Equivalence of Certain Function Spaces. CWI Tract 86, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1992. MR 1182148 | Zbl 0755.54007
[3] Bessaga C., Pełczyński A.: Spaces of continuous functions. IV. On isomorphic classification of spaces $C(S)$. Studia Math. 19 (1960), 53–62. DOI 10.4064/sm-19-1-53-62 | MR 0113132
[4] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[5] Górak R.: Function spaces on ordinals. Comment. Math. Univ. Carolin. 46 (2005), no. 1, 93–103. MR 2175862
[6] Gul'ko S. P.: Free topological groups and a space of continuous functions on ordinals. Vestnik of Tomsk State University (2003), no. 280, 34–38 (Russian).
[7] Gul'ko S. P., Os'kin A. V.: Isomorphic classification of spaces of continuous functions on totally ordered compact sets. Funkcional Anal. i Priložen. 9 (1975) no. 1, 56–57 (Russian). MR 0427401
[8] Kislyakov S. V.: Classification of spaces of continuous functions of ordinals. Siberian Math. J. 16 (1975), no. 2, 226–231; translated from Sibirskii Matematicheskij Zhurnal 16 (1975), no. 2, 293–300 (Russian). DOI 10.1007/BF00967506 | MR 0377490
[9] Semadeni Z.: Banach spaces non-isomorphic to their Cartesian squares. II. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 81–84. MR 0115074
[10] Tkachuk V. V.: A $C_p$-Theory Problem Book. Topological and Function Spaces, Problem Books in Mathematics, Springer, New York, 2011. MR 3024898
Partner of
EuDML logo