[1] Amassad A., Chenais D., Fabre C.:
Optimal control of an elastic contact problem involving Tresca friction law. Nonlinear Anal. Ser. A: Theory Methods 48 (2002), no. 8, 1107–1135.
MR 1880576
[3] Barbu V.:
Optimal Control of Variational Inequalities. Research Notes in Mathematics, 100, Pitman (Advanced Publishing Program), Boston, 1984.
MR 0742624 |
Zbl 0696.49021
[4] Bartosz K., Kalita P.:
Optimal control for a class of dynamic viscoelastic contact problems with adhesion. Dynam. Systems Appl. 21 (2012), no. 2–3, 269–292.
MR 2918380
[5] Bonnans J. F., Tiba D.:
Pontryagin's principle in the control of semiliniar elliptic variational inequalities. Appl. Mathem. Optim. 23 (1991), no. 3, 299–312.
DOI 10.1007/BF01442403 |
MR 1095664
[7] Denkowski Z., Migórski S., Ochal A.:
Optimal control for a class of mechanical thermoviscoelastic frictional contact problems. Control Cybernet. 36 (2007), no. 3, 611–632.
MR 2376043
[8] Denkowski Z., Migórski S., Ochal A.:
A class of optimal control problems for piezoelectric frictional contact models. Nonlinear Anal. Real World Appl. 12 (2011), no. 3, 1883–1895.
MR 2781904
[9] Friedman A.:
Optimal control for variational inequalities. SIAM J. Control Optim. 24 (1986), no. 3, 439–451.
DOI 10.1137/0324025 |
MR 0838049
[10] Kikuchi N., Oden J. T.:
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1988.
MR 0961258
[11] Kimmerle S.-J., Moritz R.: Optimal control of an elastic Tyre-Damper system with road contact. (P. Steinmann, G. Leugering, eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014, 14 (2014), no. 1, 875–876.
[12] Klarbring A., Mikelić A., Shillor M.:
Frictional contact problems with normal compliance. Internat. J. Engrg. Sci. 26 (1988), no. 8, 811–832.
MR 0958441
[13] Klarbring A., Mikelić A., Shillor M.:
On frictional problems with normal compliance. Nonlinear Anal. 13 (1989), no. 8, 935–955.
MR 1009079
[14] Laursen T. A.:
Computational Contact and Impact Mechanics. Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis, Springer, Berlin, 2002.
MR 1902698
[15] Lions J.-L.:
Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Gauthier-Villars, Paris, 1968 (French).
MR 0244606
[16] Martins J. A. C., Oden J. T.:
Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11 (1987), no. 3, 407–428.
DOI 10.1016/0362-546X(87)90055-1 |
MR 0881727
[18] Matei A., Micu S.: Boundary optimal control for a frictional problem with normal compliance. Appl. Math. Optim. (2017), 23 pages.
[20] Mignot R., Puel J.-P.:
Optimal control in some variational inequalities. SIAM J. Control Optim. 22 (1984), no. 3, 466–476.
DOI 10.1137/0322028 |
MR 0739836
[21] Neittaanmaki P., Sprekels J., Tiba D.:
Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics, Springer, New York, 2006.
MR 2183776
[23] Popov V. L.: Contact Mechanics and Friction. Physical Principles and Applications, Springer, Heidelberg, 2010.
[24] Rochdi M., Shillor M., Sofonea M.:
Quasistatic viscoelastic contact with normal compliance and friction. J. Elasticity 51 (1998), no. 2, 105–126.
DOI 10.1023/A:1007413119583 |
MR 1664496
[25] Shillor M., Sofonea M., Telega J. J.:
Models and Variational Analysis of Quasistatic Contact. Variational Methods, Lecture Notes in Physics, 655, Springer, Berlin, 2004.
DOI 10.1007/b99799
[26] Sofonea M., Matei A.:
Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems, Advances in Mechanics and Mathematics, 18, Springer, 2009.
MR 2488869
[27] Sofonea M., Matei A.: Mathematical Models in Contact Mechanics. London Mathematical Society, Lecture Note Series, 398, Cambridge University Press, 2012.