Previous |  Up |  Next

Article

Keywords:
inhomogeneous Musielak-Orlicz-Sobolev space; parabolic problems; Galerkin method
Summary:
We prove the existence of solutions to nonlinear parabolic problems of the following type: $$ \begin {cases} \dfrac {\partial b(u)}{\partial t}+ A(u) = f + {\rm div}(\Theta (x; t; u))& \text {in}\ Q,\\ u(x; t) = 0 & \text {on}\ \partial \Omega \times [0; T],\\ b(u)(t = 0) = b(u_0) & \text {on}\ \Omega , \end {cases} $$ where $b\colon \Bbb {R}\to \Bbb {R}$ is a strictly increasing function of class ${\mathcal C}^1$, the term $$ A(u) = -{\rm div} (a(x, t, u,\nabla u)) $$ is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, $\Theta \colon \Omega \times [0; T]\times \Bbb {R}\to \Bbb {R}$ is a Carathéodory, noncoercive function which satisfies the following condition: $\sup _{|s|\le k} |\Theta ({\cdot },{\cdot },s)| \in E_{\psi }(Q)$ for all $k > 0$, where $\psi $ is the Musielak complementary function of $\Theta $, and the second term $f$ belongs to $L^{1}(Q)$.
References:
[1] Aberqi, A., Bennouna, J., Mekkour, M., Redwane, H.: Existence results for a nonlinear parabolic problems with lower order terms. Int. J. Math. Anal., Ruse 7 (2013), 1323-1340. DOI 10.12988/ijma.2013.13130 | MR 3053336 | Zbl 1284.35216
[2] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Nonlinear elliptic equations involving measure data in Musielak-Orlicz-Sobolev spaces. J. Abstr. Differ. Equ. Appl. 4 (2013), 43-57. MR 3064138 | Zbl 1330.35136
[3] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Parabolic equations in Musielak-Orlicz-Sobolev spaces. Int. J. Anal. Appl. 4 (2014), 174-191. MR 3064138 | Zbl 06657910
[4] Oubeid, M. L. Ahmed, Benkirane, A., Vally, M. Sidi El: Strongly nonlinear parabolic problems in Musielak-Orlicz-Sobolev spaces. Bol. Soc. Paran. Mat. (3) 33 (2015), 193-223. MR 3267308
[5] Khellou, M. Ait, Benkirane, A., Douiri, S. M.: Existance of solutions for elliptic equations having naturel growth terms in Musielak-Orlicz spaces. J. Math. Comput. Sci. 4 (2014), 665-688.
[6] Azroul, E., Benboubker, M. B., Redwane, H., Yazough, C.: Renormalized solutions for a class of nonlinear parabolic equations without sign condition involving nonstandard growth. An. Univ. Craiova, Ser. Mat. Inf. 41 (2014), 69-87. MR 3234476 | Zbl 1324.35064
[7] Azroul, E., Lekhlifi, M. El, Redwane, H., Touzani, A.: Entropy solutions of nonlinear parabolic equations in Orlicz-Sobolev spaces, without sign condition and $L^1$ data. J. Nonlinear Evol. Equ. Appl. 2014 (2014), 101-130. MR 3322158 | Zbl 1327.35217
[8] Azroul, E., Hjiaj, H., Touzani, A.: Existence and regularity of entropy solutions for strongly nonlinear $p(x)$-elliptic equations. Electron. J. Differ. Equ. 2013 (2013), Paper No. 68, 27 pages. MR 3040645 | Zbl 1291.35044
[9] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 22 (1995), 241-273. MR 1354907 | Zbl 0866.35037
[10] Benkirane, A., Val, M. Ould Mohamedhen: Some approximation properties in Musielak-Orlicz-Sobolev spaces. Thai. J. Math. 10 (2012), 371-381. MR 3001860 | Zbl 1264.46024
[11] Benkirane, A., Vally, M. Sidi El: Variational inequalities in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc.-Simon Stevin 21 (2014), 787-811. DOI 10.36045/bbms/1420071854 | MR 3298478 | Zbl 1326.35142
[12] Vall, M. S. B. Elemine, Ahmed, A., Touzani, A., Benkirane, A.: Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with $L^1$ data. Bol. Soc. Paran. Math. (3) 36 (2018), 125-150. DOI 10.5269/bspm.v36i1.29440 | MR 3632476
[13] Elmahi, A., Meskine, D.: Parabolic equations in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 72 (2005), 410-428. DOI 10.1112/S0024610705006630 | MR 2156661 | Zbl 1108.35082
[14] Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 60 (2005), 1-35. DOI 10.1016/j.na.2004.08.018 | MR 2101516 | Zbl 1082.35085
[15] Gossez, J. P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190 (1974), 163-205. DOI 10.2307/1996957 | MR 0342854 | Zbl 0239.35045
[16] Nassar, S. Hadj, Moussa, H., Rhoudaf, M.: Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl. Math. Comput. 249 (2014), 253-264. DOI 10.1016/j.amc.2014.10.026 | MR 3279419 | Zbl 1338.35257
[17] Landes, R., Mustonen, V.: A strongly nonlinear parabolic initial boundary value problem. Ark. Mat. 25 (1987), 29-40. DOI 10.1007/BF02384435 | MR 0918378 | Zbl 0697.35071
[18] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034. Springer, Berlin (1983). DOI 10.1007/BFb0072210 | MR 0724434 | Zbl 0557.46020
[19] Redwane, H.: Existence of a solution for a class of parabolic equations with three unbounded nonlinearities. Adv. Dyn. Syst. Appl. 2 (2007), 241-264. MR 2489045
[20] Redwane, H.: Existence results for a class of nonlinear parabolic equations in Orlicz spaces. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Paper No. 2, 19 pages. DOI 10.14232/ejqtde.2010.1.2 | MR 2577155 | Zbl 1192.35103
[21] Vally, M. Sidi El: Strongly nonlinear elliptic problems in Musielak-Orlicz-Sobolev spaces. Adv. Dyn. Syst. Appl. 8 (2013), 115-124. MR 3071548
Partner of
EuDML logo