Previous |  Up |  Next

Article

Keywords:
globals of graphs; global determination; isomorphism
Summary:
For a class of graphs we say that it is globally determined if any two nonisomorphic graphs from that class have nonisomorphic globals. We will prove that the class of so called CCB graphs and the class of finite forests are globally determined.
References:
[1] Baker, K. A., McNulty, G. F., Werner, H.: The finitely based varieties of graph algebras. Acta Sci. Math. 51 (1987), 3-15. MR 0911554 | Zbl 0629.08003
[2] Baumann, U., Pöschel, R., Schmeichel, I.: Power graphs. J. Inf. Process. Cybern. 30 (1994), 135-142. Zbl 0834.05042
[3] Bošnjak, I., Madarász, R.: On power structures. Algebra Discrete Math. 2003 (2003), 14-35. MR 2048654 | Zbl 1063.08001
[4] Brink, C.: Power structures. Algebra Univers. 30 (1993), 177-216. DOI 10.1007/BF01196091 | MR 1223628 | Zbl 0787.08001
[5] Diestel, R.: Graph Theory. Graduate Texts in Mathematics 173 Springer, Berlin (2000). DOI 10.1007/978-3-662-53622-3 | MR 1743598 | Zbl 0945.05002
[6] Drápal, A.: Globals of unary algebras. Czech. Math. J. 35 (1985), 52-58. MR 0779335 | Zbl 0579.08004
[7] Goldblatt, R.: Varieties of complex algebras. Ann. Pure Appl. Logic 44 (1989), 173-242. DOI 10.1016/0168-0072(89)90032-8 | MR 1020344 | Zbl 0722.08005
[8] Gould, M., Iskra, J. A., Tsinakis, C.: Globals of completely regular periodic semigroups. Semigroup Forum 29 (1984), 365-374. DOI 10.1007/BF02573341 | MR 0747778 | Zbl 0553.20036
[9] Herchl, J., Jakubíková-Studenovská, D.: Globals of unary algebras. Soft Comput. 11 (2007), 1107-1112. DOI 10.1007/s00500-007-0168-9 | Zbl 1123.08001
[10] Kobayashi, Y.: Semilattices are globally determined. Semigroup Forum 29 (1984), 217-222. DOI 10.1007/BF02573326 | MR 0742134 | Zbl 0537.20034
[11] Korczyński, W.: On a model of concurrent systems. Demonstr. Math. 30 (1997), 809-828. DOI 10.1515/dema-1997-0412 | MR 1617274 | Zbl 0902.68077
[12] Korczyński, W.: Petri nets and power graphs---a comparison of two concurrence-models. Demonstr. Math. 31 (1998), 179-192. DOI 10.1515/dema-1998-0123 | MR 1623839 | Zbl 0899.68063
[13] Lovász, L.: On the cancellation law among finite relational structures. Period. Math. Hung. 1 (1971), 145-156. DOI 10.1007/BF02029172 | MR 0284391 | Zbl 0223.08002
[14] Lukács, E.: Globals of $G$-algebras. Houston J. Math. 13 (1987), 241-244. MR 0904955 | Zbl 0629.08002
[15] McNulty, G. F., Shallon, C. R.: Inherently nonfinitely based finite algebras. Universal Algebra and Lattice Theory R. S. Freese, O. C. Garcia Lecture Notes in Mathematics 1004, Springer, Berlin (1983), 206-231. DOI 10.1007/BFb0063439 | MR 0716184 | Zbl 0513.08003
[16] Mogiljanskaja, E. M.: Non-isomorphic semigroups with isomorphic semigroups of subsets. Semigroup Forum 6 (1973), 330-333. DOI 10.1007/BF02389140 | MR 0390099 | Zbl 0267.20059
[17] Shallon, C. R.: Non-finitely based binary algebras derived from lattices. Ph.D. Thesis, University of California, Los Angeles (1979). MR 2628364
[18] Tamura, T.: On the recent results in the study of power semigroups. Semigroups and Their Applications Reidel Publishing Company, Dordrecht (1987), S. M. Goberstein, P. M. Higgins 191-200. DOI 10.1007/978-94-009-3839-7_22 | MR 0900659 | Zbl 0623.20044
[19] Whitney, S.: Théories linéaries. Ph.D. Thesis, Université Laval, Québec (1977).
Partner of
EuDML logo