[1] Alemi, A. A., Bierbaum, M., Myers, C. R., Sethna, J. P.: You can run, you can hide: the epidemiology and statistical mechanics of zombies. Phys. Rev. E 92:052801 (2015).
[2] Anderson, R. M., May, R. M.:
The population dynamics of microparasites and their invertebrate hosts. Philos. Trans. Roy. Soc. London Ser. B 291 (1981), 451–524.
DOI 10.1098/rstb.1981.0005
[4] Berec, L., Janoušková, E., Theuer, M.:
Sexually transmitted infections and mate-finding Allee effects. Theoret. Population Biol. 114 (2017), 59–69.
DOI 10.1016/j.tpb.2016.12.004
[5] Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mémoires de mathématique et de physique, presentés à l’Académie royale des sciences, 1766.
[8] Coburn, B. J., Wagner, B. G., Blower, S.:
Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1). BMC Medicine 7 (2009), 30.
DOI 10.1186/1741-7015-7-30
[9] Colizza, V., Barrat, A., Barthelemy, M., Valleron, A.-J., Vespignani, A.:
Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Medicine 4 (1) (2007), e13.
DOI 10.1371/journal.pmed.0040013
[10] d’Alembert, J.: Onzième mémoire. Sur l’application du calcul des probabilités à l’inoculation de la petite vérole. Opuscules mathématiques, tome second. David, Paris, 1761.
[12] Dorigatti, I., Cauchemez, S., Ferguson, N. M.:
Increased transmissibility explains the third wave of infection by the 2009 H1N1 pandemic virus in England. Proc. Natl. Acad. Sci. USA 110 (2013), 13422–13427.
DOI 10.1073/pnas.1303117110
[13] Gumel, A. B., Ruan, S., Day, T., Watmough, J., Brauer, F., van den Driessche, P., Gabrielson, D., Bowman, C., Alexander, M. E., Ardal, S., Wu, J., Sahai, B. M.:
Modelling strategies for controlling SARS outbreaks. Proc. Roy. Soc. London B 271 (2004), 2223–2232.
DOI 10.1098/rspb.2004.2800
[14] Halloran, M. E., Ferguson, N. M., Eubank, S., Longini, J. I. M., Cummings, D. A. T., Lewis, B., Xu, S., Fraser, C., Vullikanti, A., Germann, T. C., Wagener, D., Beckman, R., Kadau, K., Barrett, C., Macken, C. A., Burke, D. S., Cooley, P.:
Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Natl. Acad. Sci. USA 105 (2008), 4639–4644.
DOI 10.1073/pnas.0706849105
[15] Hufnagel, L., Brockmann, D., Geisel, T.:
Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. USA 101 (2004), 15124–15129.
DOI 10.1073/pnas.0308344101
[16] Longini, I. M., Jr., Halloran, M. E., Nizam, A., Yang, Y.:
Containing pandemic influenza with antiviral agents. Amer. J. Epidemiol. 159 (2004), 623–633.
DOI 10.1093/aje/kwh092
[17] Longini, I. M., Jr., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D. A. T., Halloran, M. E.:
Containing pandemic influenza at the source. Science 309 (2005), 1083–1087.
DOI 10.1126/science.1115717
[18] Kermack, W. O., McKendrick, A. G.:
A contribution to the mathematical theory of epidemics. Proc. Roy. Soc. London A 115 (1927), 700–721.
DOI 10.1098/rspa.1927.0118
[19] Kermack, W. O., McKendrick, A. G.:
Contributions to the mathematical theory of epidemics, II. The problem of endemicity. Proc. Roy. Soc. London A 138 (1932), 55–83.
DOI 10.1098/rspa.1932.0171
[20] Kermack, W. O., McKendrick, A. G.:
Contributions to the mathematical theory of epidemics, III. Further studies of the problem of endemicity. Proc. Roy. Soc. London A 141 (1933), 94–122.
DOI 10.1098/rspa.1933.0106
[21] Křivan, V.: Když se matematika potká s biologií: matematická ekologie. Pokroky Mat. Fyz. Astronom. 62 (3) (2017), 185–201.
[22] Křivan, V., Lewis, M., Bentz, B. J., Bewick, S., Lenhart, S. M., Liebhold, A.:
A dynamical model for bark beetle outbreaks. J. Theoret. Biol. 407 (2016), 25–37.
DOI 10.1016/j.jtbi.2016.07.009 |
MR 3541907
[23] Kucharski, A. J., Camacho, A., Flasche, S., Glover, R. E., Edmunds, W. J., Funk, S.:
Measuring the impact of Ebola control measures in Sierra Leone. Proc. Natl. Acad. Sci. USA 112 (2015), 14366–14371.
DOI 10.1073/pnas.1508814112
[24] Mandl, P.:
Pravděpodobnostní dynamické modely. Academia, Praha, 1985.
MR 0819740
[25] Riley, S., Fraser, C., Donnelly, C. A., Ghani, A. C., Abu-Raddad, L. J., Hedley, A. J., Leung, G. M., Ho, L.-M., Lam, T.-H., Thach, T. Q., Chau, P., Chan, K.-P., Lo, S.-V., Leung, P.-Y., Tsang, T., Ho, W., Lee, K.-H., Lau, E. M. C., Ferguson, N. M., Anderson, R. M.:
Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300 (2003), 1961–1966.
DOI 10.1126/science.1086478
[27] Wu, J. T., Cowling, B. J.:
The use of mathematical models to inform influenza pandemic preparedness and response. Exp. Biol. Medicine 236 (2011), 955–961.
DOI 10.1258/ebm.2010.010271
[28] Wu, J. T., Leung, G. M., Lipsitch, M., Cooper, B. S., Riley, S.:
Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy. PLoS Medicine 6 (5) (2009), e1000085.
DOI 10.1371/journal.pmed.1000085
[29] Xia, Z.-Q., Wang, S.-F., Li, S.-L., Huang, L.-Y., Zhang, W.-Y., Sun, G.-Q., Gai, Z.-T., Jin, Z.: Modeling the transmission dynamics of Ebola virus disease in Liberia. Sci. Rep. 5 (2015), 13867.