Previous |  Up |  Next

Article

Keywords:
$1$-suppression unconditional Schauder basis; rational spaces; isometry
Summary:
Using the technique of Fraïssé theory, for every constant $K\ge 1$, we construct a universal object $\mathbb U_K$ in the class of Banach spaces possessing a normalized $K$-suppression unconditional Schauder basis.
References:
[1] Albiac F., Kalton N. J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, Cham, 2016. MR 3526021 | Zbl 1094.46002
[2] Fabián M., Halaba P., Hájek P., Montesinos Santalucía V., Pelant J., Zízler V.: Functional Analysis and Infinite-Dimensional Geometry. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 8, Springer, New York, 2001. MR 1831176
[3] Fraïssé R.: Sur quelques classifications des systèmes de relations. Publ. Sci. Univ. Alger. Sér. A. 1 (1954), 35–182 (French). MR 0069236
[4] Garbulińska-Wegrzyn J.: Isometric uniqueness of a complementably universal Banach space for Schauder decompositions. Banach J. Math. Anal. 8 (2014), no. 1, 211–220. DOI 10.15352/bjma/1381782097 | MR 3161692
[5] Gurariĭ V. I.: Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces. Sibirsk. Mat. Zh. 7 (1966), 1002–1013 (Russian). MR 0200697
[6] Johnson W. B., Szankowski A.: Complementably universal Banach spaces. Studia Math. 58 (1976), no. 1, 91–97. DOI 10.4064/sm-58-1-91-97 | MR 0425582
[7] Kadec' M. Ĭ.: On complementably universal Banach spaces. Studia Math. 40 (1971), 85–89. DOI 10.4064/sm-40-1-85-89 | MR 0313764
[8] Kubiś W.: Fraïssé sequences: category-theoretic approch to universal homogeneous structures. Ann. Pure Appl. Logic 165 (2014), no. 11, 1755–1811. DOI 10.1016/j.apal.2014.07.004 | MR 3244668
[9] Kubiś W., Solecki S.: A proof of uniqueness of the Gurariĭ space. Israel J. Math. 195 (2013), no. 1, 449–456. DOI 10.1007/s11856-012-0134-9 | MR 3101256
[10] Pełczyński A.: Projections in certain Banach spaces. Studia Math. 19 (1960), 209–228. DOI 10.4064/sm-19-2-209-228 | MR 0126145
[11] Pełczyński A.: Universal bases. Studia Math. 32 (1969), 247–268. DOI 10.4064/sm-32-3-247-268 | MR 0241954
[12] Pełczyński A.: Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis. Studia Math. 40 (1971), 239–243. DOI 10.4064/sm-40-3-239-243 | MR 0308753
[13] Pełczyński A., Wojtaszczyk P.: Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces. Studia Math. 40 (1971), 91–108. DOI 10.4064/sm-40-1-91-108 | MR 0313765
[14] Schechtman G.: On Pełczyński's paper “Universal bases” (Studia Math. 32 (1969), 247–268). Israel J. Math. 22 (1975), no. 3–4, 181–184. MR 0390730
Partner of
EuDML logo