Previous |  Up |  Next

Article

Title: Isometric embeddings of a class of separable metric spaces into Banach spaces (English)
Author: Mercourakis, Sophocles K.
Author: Vassiliadis, Vassiliadis G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 233-239
Summary lang: English
.
Category: math
.
Summary: Let $(M,d)$ be a bounded countable metric space and $c>0$ a constant, such that $d(x,y)+d(y,z)-d(x,z)\geq c$, for any pairwise distinct points $x,y,z$ of $M$. For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of $\ell_\infty $. (English)
Keyword: concave metric space
Keyword: isometric embedding
Keyword: separated set
MSC: 46B20
MSC: 46B26
MSC: 46E15
MSC: 54D30
idZBL: Zbl 06940866
idMR: MR3815688
DOI: 10.14712/1213-7243.2015.239
.
Date available: 2018-06-28T08:46:50Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147256
.
Reference: [1] Braß P.: On equilateral simplices in normed spaces.Beiträge Algebra Geom. 40 (1999), no. 2, 303–307. MR 1720106
Reference: [2] Elton J., Odell E.: The unit ball of every infinite-dimensional normed linear space contains a $(1+\varepsilon)$-separated sequence.Colloq. Math. 44 (1981), no. 1, 105–109. MR 0633103, 10.4064/cm-44-1-105-109
Reference: [3] Glakousakis E., Mercourakis S.: On the existence of $1$-separated sequences on the unit ball of a finite-dimensional Banach space.Mathematika 61 (2015), no. 3, 547–558. MR 3415641, 10.1112/S002557931400028X
Reference: [4] Kilbane J.: On embeddings of finite subsets of $l_2$.available at arXiv:1609.08971v2 [math.FA] (2016), 12 pages. MR 3767362
Reference: [5] Mercourakis S. K., Vassiliadis G.: Equilateral sets in infinite dimensional Banach spaces.Proc. Amer. Math. Soc. 142 (2014), no. 1, 205–212. MR 3119196, 10.1090/S0002-9939-2013-11746-6
Reference: [6] Ostrovskii M. I.: Metric Embeddings. Bilipschitz and Coarse Embeddings into Banach Spaces.De Gruyter Studies in Mathematics, 49, De Gruyter, Berlin, 2013. MR 3114782
Reference: [7] Partington J. R.: Subspaces of certain Banach sequence spaces.Bull. London Math. Soc. 13 (1981), no. 2, 162–166. MR 0608103, 10.1112/blms/13.2.162
Reference: [8] Swanepoel K. J.: Equilateral sets in finite-dimensional normed spaces.Seminar of Mathematical Analysis, Colecc. Abierta, 71, Univ. Sevilla Secr. Publ., Seville, 2004, pp. 195–237. MR 2117069
Reference: [9] Swanepoel K. J., Villa R.: A lower bound for the equilateral number of normed spaces.Proc. Amer. Math. Soc. 136 (2008), no. 1, 127–131. MR 2350397, 10.1090/S0002-9939-07-08916-2
Reference: [10] Swanepoel K. J., Villa R.: Maximal equilateral sets.Discrete Comput. Geom. 50 (2013) no. 2, 354–373. MR 3090523, 10.1007/s00454-013-9523-z
Reference: [11] Talagrand M.: Sur les espaces de Banach contenant $l_1(\tau)$.Israel J. Math. 40 (1981) no. 3–4, 324–330 (French. English summary). MR 0654587, 10.1007/BF02761372
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_8.pdf 246.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo