Previous |  Up |  Next

Article

Keywords:
Hilbert space; normal operator; equivalent metrics; composition operator
Summary:
Some stronger and equivalent metrics are defined on $\mathcal {M}$, the set of all bounded normal operators on a Hilbert space $H$ and then some topological properties of $\mathcal {M}$ are investigated.
References:
[1] Benharrat, M., Messirdi, B.: Strong metrizability for closed operators and the semi-Fredholm operators between two Hilbert spaces. Int. J. Anal. Appl. 8 (2015), 110-122.
[2] Cordes, H. O., Labrousse, J. P.: The invariance of the index in the metric space of closed operators. J. Math. Mech. 12 (1963), 693-719. MR 0162142 | Zbl 0148.12402
[3] Gilfeather, F.: Norm conditions on resolvents of similarities of Hilbert space operators and applications to direct sums and integrals of operators. Proc. Am. Math. Soc. 68 (1978), 44-48. DOI 10.2307/2040905 | MR 0475583 | Zbl 0381.47003
[4] Kato, T.: Perturbation Theory for Linear Operators. Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1976). DOI 10.1007/978-3-642-66282-9 | MR 0407617 | Zbl 0342.47009
[5] Kaufman, W. E.: A stronger metric for closed operators in Hilbert space. Proc. Am. Math. Soc. 90 (1984), 83-87. DOI 10.2307/2044673 | MR 0722420 | Zbl 0551.47001
[6] Kittaneh, F.: On some equivalent metrics for bounded operators on Hilbert space. Proc. Am. Math. Soc. 110 (1990), 789-798. DOI 10.2307/2047922 | MR 1027097 | Zbl 0721.47013
[7] Labrousse, J. P.: On a metric space of closed operators on a Hilbert space. Univ. Nac. Tucumán, Rev., Ser. A 16 (1966), 45-77. MR 0226445 | Zbl 0154.15803
[8] Labrousse, J. P.: Quelques topologies sur des espaces d'opérateurs dans des espaces de Hilbert et leurs applications. Faculté des Sciences de Nice (Math.) 1 (1970), 47 pages.
[9] Lambert, A., Petrovic, S.: Beyond hyperinvariance for compact operators. J. Funct. Anal. 219 (2005), 93-108. DOI 10.1016/j.jfa.2004.06.001 | MR 2108360 | Zbl 1061.47018
[10] Singh, R. K., Manhas, J. S.: Composition Operators on Function Spaces. North-Holland Mathematics Studies 179. North-Holland, Amsterdam (1993). MR 1246562 | Zbl 0788.47021
Partner of
EuDML logo