Previous |  Up |  Next

Article

Keywords:
(strong) endomorphism; congruence; kernel; connected monounary algebra; cycle
Summary:
All monounary algebras which have strong endomorphism kernel property are described.
References:
[1] Blyth, T. S., Fang, J., Wang, L.-B.: The strong endomorphism kernel property in distributive double p-algebras. Sci. Math. Jpn. 76 (2013), 227-234. MR 3330070 | Zbl 1320.06009
[2] Blyth, T. S., Silva, H. J.: The strong endomorphism kernel property in Ockham algebras. Commun. Algebra 36 (2008), 1682-1694. DOI 10.1080/00927870801937240 | MR 2424259 | Zbl 1148.06005
[3] Fang, G., Fang, J.: The strong endomorphism kernel property in distributive p-algebras. Southeast Asian Bull. Math. 37 (2013), 491-497. MR 3134913 | Zbl 1299.06017
[4] Fang, J., Sun, Z.-J.: Semilattices with the strong endomorphism kernel property. Algebra Univers. 70 (2013), 393-401. DOI 10.1007/s00012-013-0254-z | MR 3127981 | Zbl 1305.06004
[5] Guričan, J.: Strong endomorphism kernel property for Brouwerian algebras. JP J. Algebra Number Theory Appl. 36 (2015), 241-258. DOI 10.17654/JPANTAJun2015_241_258 | Zbl 1333.06025
[6] Guričan, J., Ploščica, M.: The strong endomorphism kernel property for modular p-algebras and for distributive lattices. Algebra Univers. 75 (2016), 243-255. DOI 10.1007/s00012-016-0370-7 | MR 3515400 | Zbl 1348.06008
[7] Jakubíková-Studenovská, D., Pócs, J.: Monounary Algebras. Pavol Jozef Šafárik University, Košice (2009). Zbl 1181.08001
[8] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: Algebras, Lattices, Varieties. Vol. 1. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advance Books & Software XII. Monterey, California (1987). MR 0883644 | Zbl 0611.08001
Partner of
EuDML logo