Previous |  Up |  Next

Article

Keywords:
idempotent; nilpotent; Boolean ring; local ring; Morita context
Summary:
We completely determine when a ring consists entirely of weak idempotents, units and nilpotents. We prove that such ring is exactly isomorphic to one of the following: a Boolean ring; $\Bbb Z_3\oplus {\Bbb Z}_3$; $\Bbb Z_3\oplus B$ where $B$ is a Boolean ring; local ring with nil Jacobson radical; $M_2(\Bbb Z_2)$ or $M_2(\Bbb Z_3)$; or the ring of a Morita context with zero pairings where the underlying rings are $\Bbb Z_2$ or $\Bbb Z_3$.
References:
[1] Ahn, M. S., Anderson, D. D.: Weakly clean rings and almost clean rings. Rocky Mountain J. Math. 36 (2006), 783-798. DOI 10.1216/rmjm/1181069429 | MR 2254362 | Zbl 1131.13301
[2] Anderson, D. D., Camillo, V. P.: Commutative rings whose elements are a sum of a unit and idempotent. Comm. Algebra 30 (2002), 3327-3336. DOI 10.1081/agb-120004490 | MR 1914999 | Zbl 1083.13501
[3] Breaz, S., Gălugăreanu, G., Danchev, P., Micu, T.: Nil-clean matrix rings. Linear Algebra Appl. 439 (2013), 3115-3119. DOI 10.1016/j.laa.2013.08.027 | MR 3116417 | Zbl 1355.16023
[4] Chen, H.: Rings Related Stable Range Conditions. Series in Algebra 11. World Scientific, Hackensack (2011). MR 2752904 | Zbl 1245.16002
[5] Danchev, P. V., McGovern, W. W.: Commutative weakly nil clean unital rings. J. Algebra 425 (2015), 410-422. DOI 10.1016/j.jalgebra.2014.12.003 | MR 3295991 | Zbl 1316.16028
[6] Diesl, A. J.: Nil clean rings. J. Algebra 383 (2013), 197-211. DOI 10.1016/j.jalgebra.2013.02.020 | MR 3037975 | Zbl 1296.16016
[7] Du, X.: The adjoint semigroup of a ring. Commun. Algebra 30 (2002), 4507-4525. DOI 10.1081/AGB-120013336 | MR 1936488 | Zbl 1030.16012
[8] Immormino, N. A.: Clean Rings & Clean Group Rings, Ph.D. Thesis. Bowling Green State University, Bowling Green (2013). MR 3321928
[9] Kosan, M. T., Lee, T. K., Zhou, Y.: When is every matrix over a division ring a sum of an idempotent and a nilpotent?. Linear Algebra Appl. 450 (2014), 7-12. DOI 10.1016/j.laa.2014.02.047 | MR 3192466 | Zbl 1303.15016
[10] McGovern, W., Raja, S., Sharp, A.: Commutative nil clean group rings. J. Algebra Appl. 14 (2015). DOI 10.1142/S0219498815500942 | MR 3338090 | Zbl 1325.16024
[11] Nicholson, W. K.: Rings whose elements are quasi-regular or regular. Aequations Math. 9 (1973), 64-70. DOI 10.1007/BF01838190 | MR 0316497 | Zbl 0255.16006
Partner of
EuDML logo