Previous |  Up |  Next

Article

Title: Non-Wieferich primes in number fields and $abc$-conjecture (English)
Author: Kotyada, Srinivas
Author: Muthukrishnan, Subramani
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 2
Year: 2018
Pages: 445-453
Summary lang: English
.
Category: math
.
Summary: Let $K/\mathbb {Q}$ be an algebraic number field of class number one and let $\mathcal {O}_K$ be its ring of integers. We show that there are infinitely many non-Wieferich primes with respect to certain units in $\mathcal {O}_K$ under the assumption of the $abc$-conjecture for number fields. (English)
Keyword: Wieferich prime
Keyword: non-Wieferich prime
Keyword: number field
Keyword: $abc$-conjecture
MSC: 11A41
MSC: 11R04
idZBL: Zbl 06890382
idMR: MR3819183
DOI: 10.21136/CMJ.2018.0485-16
.
Date available: 2018-06-11T10:54:44Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147228
.
Reference: [1] Graves, H., Murty, M. R.: The $abc$ conjecture and non-Wieferich primes in arithmetic progressions.J. Number Theory 133 (2013), 1809-1813. Zbl 1272.11014, MR 3027939, 10.1016/j.jnt.2012.10.012
Reference: [2] Győry, K.: On the $abc$ conjecture in algebraic number fields.Acta Arith. 133 (2008), 281-295. Zbl 1188.11011, MR 2434605, 10.4064/aa133-3-6
Reference: [3] Murty, M. R.: The $ABC$ conjecture and exponents of class groups of quadratic fields.Number Theory. Proc. Int. Conf. On Discrete Mathematics and Number Theory, Tiruchirapalli, India, 1996 V. K. Murty et al. Contemp. Math. 210. AMS, Providence (1998), 85-95. Zbl 0893.11043, MR 1478486, 10.1090/conm/210/02785
Reference: [4] Murty, M. R., Esmonde, J.: Problems in Algebraic Number Theory.Graduate Texts in Mathematics 190, Springer, Berlin (2005). Zbl 1055.11001, MR 2090972, 10.1007/b138452
Reference: [5] : PrimeGrid Project. Available at http://www.primegrid.com/..
Reference: [6] Silverman, J. H.: Wieferich's criterion and the $abc$-conjecture.J. Number Theory 30 (1988), 226-237. Zbl 0654.10019, MR 0961918, 10.1016/0022-314X(88)90019-4
Reference: [7] Vojta, P.: Diophantine Approximations and Value Distribution Theory.Lecture Notes in Mathematics 1239, Springer, Berlin (1987). Zbl 0609.14011, MR 0883451, 10.1007/BFb0072989
Reference: [8] Wieferich, A.: Zum letzten Fermatschen Theorem.J. Reine Angew. Math. 136 (1909), 293-302 German \99999JFM99999 40.0256.03. MR 1580782, 10.1515/crll.1909.136.293
.

Files

Files Size Format View
CzechMathJ_68-2018-2_9.pdf 269.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo