[1] Baker, A.: Bounds for the solutions of the hyperelliptic equation. Proc. Cambridge Philos. Soc. 65 (1969), 439–444.
[2] Fuchs, W.H.J.: A polynomial the square of another polynomial. Amer. Math. Monthly 57 (1950), 114–116.
[3] Jordan, C.: Calculus of Finite Differences. Chelsea Publishing Company, New York, N.Y., 1950, 2nd edition.
[4] Kojima, T.: Note on number-theoretical properties of algebraic functions. Tohoku Math. J. 8 (1915).
[6] Masser, D.W.: Polynomial bounds for Diophantine equations. Amer. Math. Monthly (1980), 486–488.
[7] Poulakis, D.: A simple method for solving the Diophantine equation $Y^2=X^4+aX^3+bX^2+cX+d$. Elem. Math. 54 (1) (1999), 32–36.
[8] Rolle, M.: Traité d’algèbre. Paris, 1690.
[9] Shapiro, H.S.:
The range of an integer-valued polynomial. Amer. Math. Monthly 64 (1957).
DOI 10.2307/2310169
[10] Szalay, L.:
Superelliptic equations of the form $y^p=x^{kp}+a_{kp-1}x^{kp-1}+\cdots +a_0$. Bull. Greek Math. Soc. 46 (2002), 23–33.
MR 1924066
[12] Voutier, P.M.:
An upper bound for the size of integral solutions to $Y^m=f(X)$. J. Number Theory 53 (1995), 247–271.
DOI 10.1006/jnth.1995.1090
[13] Walsh, P.G.:
A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62 (2) (1992), 157–172.
DOI 10.4064/aa-62-2-157-172