Previous |  Up |  Next

Article

Keywords:
multidimensional systems; positive polynomials; fast Fourier transforms; stability; numerical algorithm
Summary:
The paper presents a simple method to check a positiveness of symmetric multivariate polynomials on the unit multi-circle. The method is based on the sampling polynomials using the fast Fourier transform. The algorithm is described and its possible applications are proposed. One of the aims of the paper is to show that presented algorithm is significantly faster than commonly used method based on the semi-definite programming expression.
References:
[1] Ali, A., Ali, M.: Identification of Box-Jenkins model for spatially interconnected systems in closed-loop. Multidimensional Systems Signal Process. 28 (2016), 1-11. DOI 10.1007/s11045-016-0462-8 | MR 3745050
[2] Augusta, P.: A numerical test of positiveness on the unit circle based on the fast Fourier transform. In: Proc. 21st Mediterranean Conference on Control and Automation, 2013, pp. 1050-1054. DOI 10.1109/med.2013.6608850
[3] Augusta, P.: A simple method for stabilisation of (2+1)D systems. In: Proc. 8th International Workshop on Multidimensional Systems, 2013, pp. 163-167.
[4] Augusta, P., Augustová, P.: On stabilisability of 2-D MIMO shift-invariant systems. J. Franklin Inst. 350 (2013), 2949-2966. DOI 10.1016/j.jfranklin.2013.05.021 | MR 3123399
[5] Augusta, P., Cichy, B., Galkowski, K., Rogers, E.: An unconditionally stable finite difference scheme systems described by second order partial differential equations. In: Proc. IEEE 9th International Workshop on Multidimensional Systems, 2015, pp. 134-139. DOI 10.1109/nds.2015.7332655
[6] Augusta, P., Cichy, B., Galkowski, K., Rogers, E.: An unconditionally stable approximation of a circular flexible plate described by a fourth order partial differential equation. In: Proc. 21st International Conference on Methods and Models in Automation and Robotics, 2016. DOI 10.1109/mmar.2016.7575281
[7] Augusta, P., Hurák, Z.: Distributed stabilisation of spatially invariant systems - positive polynomial approach. Multidimensional Systems Signal Process. 24 (2013), 3-21. DOI 10.1007/s11045-011-0152-5 | MR 3016749
[8] Bose, N. K.: Multidimensional Systems Theory - Progress, Directions and Open Problems in Multidimensional Systems. D. Riedel Publishing Company, 1985. DOI 10.1007/978-94-009-5225-6 | MR 0804981
[9] Bose, N. K.: Multidimensional Systems Theory and Applications. Second edition. Kluwer Academic Publishers, 2003. MR 2039820
[10] Cichy, B., Gałkowski, K., Rogers, E.: Iterative learning control for spatio-temporal dynamics using Crank-Nicolson discretization. Multidimensional Systems Signal Process. 23 (2012), 185-208. MR 2875114
[11] Cichy, B., Gałkowski, K., Rogers, E., Kummert, A.: An approach to iterative learning control for spatio-temporal dynamics using nD discrete linear systems models. Multidimensional Systems Signal Process. 22 (2011), 83-96. DOI 10.1007/s11045-010-0108-1 | MR 2771473
[12] Cichy, B., Hladowski, L., Gałkowski, K., Rauh, A., Aschemann, H.: Iterative learning control of an electrostatic microbridge actuator with polytopic uncertainty models. IEEE Trans. Control Systems Technol. 23 (2015), 2035-2043. DOI 10.1109/tcst.2015.2394236
[13] Cooley, J. W., Tukey, J. W.: An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19 (1965), 297-301. DOI 10.2307/2003354 | MR 0178586
[14] Dumitrescu, B.: Sum-of-squares polynomials and the stability of discrete-time systems. In: Proc. Fourth International Workshop on Multidimensional Systems, 2005, pp. 223-228. DOI 10.1109/nds.2005.195358
[15] Dumitrescu, B.: Stability test of multidimensional discrete-time systems via sum-of-squares decomposition. IEEE Trans. Circuts Systems 53 (2006), 928-936. DOI 10.1109/tcsi.2005.859624 | MR 2235849
[16] Dumitrescu, B.: Positive Trigonometric Polynomials and Signal Processing Applications. Springer, 2007. MR 2309555
[17] Dumitrescu, B.: Positivstellensatz for trigonometric polynomials and multidimensional stability tests. IEEE Trans. Circuits Systems 54 (2007), 353-356. DOI 10.1109/tcsii.2006.890409
[18] Dumitrescu, B., Şicleru, B. C., Ştefan, R.: Minimax design of adjustable FIR filters using 2D polynomial methods. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, pp. 3181-3184. DOI 10.1109/icassp.2009.4960300
[19] Henrion, D., Garulli, A.: Positive Polynomials in Control.
[20] Kaczorek, T.: Positive 1D and 2D Systems. Springer, London 2002. DOI 10.1007/978-1-4471-0221-2
[21] Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Berlin 2011. MR 2798773 | Zbl 1221.93002
[22] Löfberg, J.: Yalmip - a toolbox for modeling and optimization in MATLAB. In: Proc. CACSD Conference, 2004. DOI 10.1109/cacsd.2004.1393890
[23] MATLAB: version 9.2.0.538062 (R2017a). MathWorks, Natick 2017.
[24] Paszke, W.: Analysis and Synthesis of Multidimensional System Classes Using Linear Matrix Inequality Methods. University of Zielona Góra Press, Zielona Góra 2005. MR 2796590
[25] Rabenstein, R., Steffen, P.: Numerical iterative methods and repetitive processes. Multidimensional Systems Signal Process. 23 (2012), 163-183. DOI 10.1007/s11045-010-0115-2 | MR 2875113
[26] Ramos, J., Mercère, G.: Subspace algorithm for identifying separable in denominator 2-D systems with deterministic-stochastic inputs. Int. J. Control 89 (2016), 2584-2610. DOI 10.1080/00207179.2016.1172258 | MR 3576751
[27] Rogers, E., Gałkowski, K., Owens, D. H.: Control Systems Theory and Applications for Linear Repetitive Processes. Springer, 2007. MR 2313304
[28] Rogers, E., Gałkowski, K., Paszke, W., Moore, K. L., Bauer, P. H., Hladowski, L., Dabkowski, P.: Multidimensional control systems - case studies in design and evaluation. Multidimensional Systems Signal Process. 26 (2015), 895-939. DOI 10.1007/s11045-015-0341-8 | MR 3401856
[29] Strintzis, M. G.: Test of stability of multidimensional filters. IEEE Trans. Automat. Control 24 (1977), 432-437. DOI 10.1109/tcs.1977.1084368 | MR 0497276
[30] Sturm, J. F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optimiz. Methods Software 11 (1999), 625-653. DOI 10.1080/10556789908805766 | MR 1778433
[31] Sulikowski, B., Galkowski, K., Kummert, A.: Proportional plus integral control of ladder circuits modeled in the form of two-dimensional (2D) systems. Multidimensional Systems Signal Process. 26 (2015), 267-290. DOI 10.1007/s11045-013-0256-1 | MR 3300512
[32] Sulikowski, B., Galkowski, K., Kummert, A.: Stability and stabilisation of active ladder circuits modeled in the form of two-dimensional (2D) systems. In: Proc. IEEE 9th International Workshop on Multidimensional Systems, 2015. DOI 10.1109/nds.2015.7332654 | MR 3300512
[33] Zhang, F.: The Schur Complement and its Applications. Springer, 2005. DOI 10.1007/b105056 | MR 2160825
Partner of
EuDML logo