[2] Brunner N.: Lindelöf Räume und Auswahlaxiom. Anz. Österr. Akad. Wiss. Math.-Nat. 119 (1982), 161–165.
[4] Herrlich H.:
Axiom of Choice. Lecture Notes in Mathematics, 1876, Springer, Berlin, 2006.
Zbl 1102.03049
[5] Herrlich H.: Products of Lindelöf $T_{2}$-spaces are Lindelöf---in some models of $ {\rm {ZF}}$. Comment. Math. Univ. Carolin. 43, (2002), no. 2, 319–333.
[6] Herrlich H., Strecker G. E.: When is $\mathbb N$ Lindelöf?. Comment. Math. Univ. Carolin. 38 (1997), no. 3, 553–556.
[8] Howard P., Rubin J. E.:
Consequences of the Axiom of Choice. Math. Surveys and Monographs, 59, American Mathematical Society, Providence, 1998.
DOI 10.1090/surv/059 |
Zbl 0947.03001
[9] Keremedis K.:
On the relative strength of forms of compactness of metric spaces and their countable productivity in $\mathbf {ZF}$. Topology Appl. 159 (2012), 3396–3403.
DOI 10.1016/j.topol.2012.08.003
[10] Keremedis K.:
On metric spaces where continuous real valued functions are uniformly continuous in $\mathbf {ZF}$. Topology Appl. 210 (2016), 366–375.
DOI 10.1016/j.topol.2016.07.021
[11] Keremedis K.:
Some notions of separability of metric spaces in $\mathbf {ZF}$ and their relation to compactness. Bull. Polish Acad. Sci. Math. 64 (2016), 109–136.
DOI 10.4064/ba8087-12-2016
[13] Munkres J. R.:
Topology. Prentice-Hall, New Jersey, 1975.
Zbl 0951.54001
[14] Tachtsis E.: Disasters in metric topology without choice. Comment. Math. Univ. Carolin. 43 (2002), no. 1, 165–174.