Previous |  Up |  Next

Article

Keywords:
interval Type-2 fuzzy logic; type-reduction; Type-2 fuzzy control; Type-2 fuzzy edge detection
Summary:
Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized Type-2 Fuzzy Logic Controllers, in order to generate criteria to decide which type of controller is better in specific applications. The plants considered in the experimentation are two benchmark control plants and we report the Integral Squared Error (ISE), Integral Absolute Error (IAE) and Integral Time-weighted Absolute Error (ITAE) performance metrics, and also another important metric reported is the execution time. Based on the experimental results, Fuzzy Logic Controller selection criteria are proposed according to the performance and execution time requirements.
References:
[1] Abdelaal, M. E., Emara, H. M., Bahgat, A.: Interval type 2 fuzzy sliding mode control with application to inverted pendulum on a cart. In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 100-105. DOI 10.1109/icit.2013.6505655
[2] Amador-Angulo, L., Castillo, O.: Optimization of the Type-1 and Type-2 fuzzy controller design for the water tank using the Bee Colony Optimization. In: 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW), 2014, pp. 1-8. DOI 10.1109/norbert.2014.6893876 | MR 3558534
[3] Caraveo, C., Valdez, F., Castillo, O.: Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. 43 (2016), 131-142. DOI 10.1016/j.asoc.2016.02.033
[4] Castillo, O., Amador-Angulo, L., Castro, J. R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354 (2016), 257-274. DOI 10.1016/j.ins.2016.03.026
[5] Farooq, U., Gu, J., Luo, J.: On the interval type-2 fuzzy logic control of ball and plate system. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2250-2256. DOI 10.1109/robio.2013.6739804
[6] Fernandes, M. A. C.: Fuzzy controller applied to electric vehicles with continuously variable transmission. Neurocomputing 214 (2016), 684-691. DOI 10.1016/j.neucom.2016.06.051
[7] Hagras, H.: Type-2 FLCs: A new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2 (2007), 1, 30-43. DOI 10.1109/mci.2007.357192
[8] Hannan, M. A., Ghani, Z. A., Mohamed, A., Uddin, M. N.: Real-time testing of a fuzzy-logic-controller-based grid-connected photovoltaic inverter system. IEEE Trans. Ind. Appl. 41 (2015), 6, 4775-4784. DOI 10.1109/tia.2015.2455025
[9] Hasanien, H. M., Matar, M.: A fuzzy logic controller for autonomous operation of a voltage source converter-based distributed generation system. IEEE Trans. Smart Grid 6 (2015), 1, 158-165. DOI 10.1109/tsg.2014.2338398
[10] Hoseini, S. A., Labibi, B.: Robust fuzzy controller design with bounded control effort for nonlinear systems with parametric uncertainties. In: 2009 International Conference on Networking, Sensing and Control, 2009, pp. 118-123. DOI 10.1109/icnsc.2009.4919257
[11] Hassan, S., Khosravi, A., Jaafar, J., Khanesar, M. A.: A systematic design of interval type-2 fuzzy logic system using extreme learning machine for electricity load demand forecasting. Energy Build. 127 (2016), 95-104.
[12] Kamal, E., Aitouche, A., Kuzmych, O.: Robust fuzzy controller for photovoltaic maximum power point tracking. In: 21st Mediterranean Conference on Control and Automation 2013, pp. 1304-1309. DOI 10.1109/med.2013.6608888
[13] Karnik, N. N., Mendel, J. M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132 (2001), 1-4, 195-220. DOI 10.1016/s0020-0255(01)00069-x | MR 1822768
[14] Karnik, N. N., Mendel, J. M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7 (1999), 6, 643-658. DOI 10.1109/91.811231
[15] Liang, Q., Mendel, J. M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8 (2000), 5-6, 535-550. DOI 10.1109/91.873577
[16] Liu, J., Zhang, W., Chu, X., Liu, Y.: Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight. Int. J. Electr. Power Energy Syst. 82 (2016), 1-10.
[17] Liu, J., Zhang, W., Chu, X., Liu, Y.: Fuzzy logic controller for energy savings in a smart LED lighting system considering lighting comfort and daylight. Energy Build. 127 (2016), 95-104. DOI 10.1016/j.enbuild.2016.05.066
[18] Mahmoodabadi, M. J., Jahanshahi, H.: Multi-objective optimized fuzzy-PID controllers for fourth order nonlinear systems. Eng. Sci. Technol. Int. J. 19 (2016), 2, 1084-1098. DOI 10.1016/j.jestch.2016.01.010
[19] Mamdani, E. H.: Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121 (1974), 12, 1585-1588. DOI 10.1049/piee.1974.0328
[20] Masmoudi, M. S., Krichen, N., Masmoudi, M., Derbel, N.: Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl. Soft Comput. 45 (201), 901-919. DOI 10.1016/j.asoc.2016.08.057
[21] Masmoudi, M. S., Krichen, N., Masmoudi, M., Derbel, N.: Fuzzy logic controllers design for omnidirectional mobile robot navigation. Appl. Soft Comput. 49 (2016), 901-919. DOI 10.1016/j.asoc.2016.08.057
[22] Melin, P., Gonzalez, C. I., Castro, J. R., Mendoza, O., Castillo, O.: Edge-Detection Method for Image Processing Based on Generalized Type-2 Fuzzy Logic. IEEE Trans. Fuzzy Syst. 22 (2014), 6, 1515-1525. DOI 10.1109/tfuzz.2013.2297159
[23] Mendel, J. M., John, R. I. B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10 (2002), 2, 117-127. DOI 10.1109/91.995115
[24] Mendel, J. M., Liu, F., Zhai, D.: Alpha-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications. IEEE Trans. Fuzzy Syst. 17 (2009), 5, 1189-1207. DOI 10.1109/tfuzz.2009.2024411
[25] Ofoli, A. R., Rubaai, A.: Real-Time Implementation of a Fuzzy Logic Controller for Switch-Mode Power-Stage DC - DC Converters. IEEE Trans. Ind. Appl. 42 (2006), 6, 1367-1374. DOI 10.1109/tia.2006.882669
[26] Premkumar, K., Manikandan, B. V.: Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor. Eng. Sci. Technol. Int. J. 19 (2016), 2, 818-840. DOI 10.1016/j.jestch.2015.11.004
[27] Sanchez, M. A., Castillo, O., Castro, J. R.: Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems. Expert Syst. Appl. 42 (2015), 14, 5904-5914. DOI 10.1016/j.eswa.2015.03.024
[28] Singh, M., Kumar, P., Kar, I.: Implementation of vehicle to grid infrastructure using fuzzy logic controller. IEEE Trans. Smart Grid 3 (2012), 1, 565-577. DOI 10.1109/tsg.2011.2172697
[29] Wati, D. A. R.: Maximum power point tracking of photovoltaic systems using simple interval type-2 fuzzy logic controller based on hill climbing algorithm. In: 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 687-692. DOI 10.1109/isitia.2016.7828743
[30] Wu, D.: On the fundamental differences between interval Type-2 and Type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20 (2012), 5, 832-848. DOI 10.1109/tfuzz.2012.2186818
[31] Zadeh, L. A.: Fuzzy logic $=$ computing with words. IEEE Trans. Fuzzy Syst. 4 (1996), 2, 103-111. DOI 10.1109/91.493904 | MR 1409148
Partner of
EuDML logo