[1] Alaykiran, K., Engin, O.: Karinca Kolonileri Metasezgiseli ve Gezgin Satici Problemleri Üzerinde Bir Uygulamasi. Gazi Üniv. Müh. Mim. Fak. Der. 20 (2005), 69-76.
[2] Alaykoran, K., Engin, O.: The American Heritage. Dictionary of the American Language. Gazi Üniv. Müh. Mim. Fak. Der. 20 (2005), 69-76.
[3] Anguelova, M.: Nonlinear Observability and Identifiability: General Theory and a Case Study of a Kinetic Model for S. cerevisiae. Department of Mathematics. Chalmers University of technology and Göteborg University SE-412 96, Göteborg 2004.
[4] Balsa-Canto, E.:
An iterative identification procedure for dynamic modeling of biochemical networks. BMC Systems Biology 4 (2010), 1, 4-11.
DOI 10.1186/1752-0509-4-11
[5] Berger, M., Rodbard, D.:
Computer simulation of plasma insulin and glucose dynamics after subcutaneous insulin injection. Diabetes Care 12 (1989), 10, 725-736.
DOI 10.2337/diacare.12.10.725
[6] Bergman, R. N., Ider, Y. Z., Bowden, C. R., Cobelli, C.: Quantitative estimation of insulin sensitivity. Amer. J. Physiology 236 (1979), 6, E667-E677.
[8] Chis, O. T., Banga, J. R., Balsa-Canto, E.:
Structural identifiability of systems biology models: A critical comparison of methods. PLos One 6 (2011), 11, e27755.
DOI 10.1371/journal.pone.0027755
[9] Chis, O., Banga, J. R., Balsa-Canto, E.:
GenSSI: a software toolbox for structural identifiability analysis of biological models. Bioinformatics 27 (2011), 18, 2610-2611.
DOI 10.1093/bioinformatics/btr431
[10] Cobelli, C., Man, C. Dalla, Sparacino, G., Magni, L., Nicolao, G. de, Kovatchev, B.:
Models, signals and control (Methodological review). IEEE Rev. Biomed. Engrg. 2 (2009), 54-96.
DOI 10.1109/rbme.2009.2036073
[11] Colmegna, P., Peña, R. S. Sanchez:
Analysis of three T1DM simulation models for evaluating robust closed-loop controllers. Computer Methods and Programs in Biomedicine 113 (2014), 371-382.
DOI 10.1016/j.cmpb.2013.09.020
[12] Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by Ant Colonies. In: The First European Conference on Artificial Life. Paris 1992.
[13] Das, T. K., Venayagamoorthy, G. K., Aliyu, U. O.:
Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA. IEEE Trans. Ind. Appl. 44 (2008), 5, 1445-1457.
DOI 10.1109/tia.2008.2002171
[15] Valle, Y. del, Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., Harley, R. G.:
Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12 (2008), 2, 171-195.
DOI 10.1109/tevc.2007.896686
[16] Dikondwar, S.-R.:
Design and development of insulin delivery system prototype. In: Communication Software and Networks (ICCSN), IEEE 3rd International Conference 2011, pp. 575-579.
DOI 10.1109/iccsn.2011.6014636
[17] Eberhart, R. C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. 6th Int. Symp. Micromachine Hum. Sci. 1995, pp. 39-43.
[18] Ergüzel, T., Akbay, E.: ACO (Ant Colony Optimization) Algoritmasi ile Yrnge Takibi. Izmit, Kocaeli 2007.
[19] Femat, R., Ruiz-Velázquez, E., Quiroz, G.:
Weighting restriction for intravenous insulin delivery on t1dm patient via $H_{\infty}$ control. IEEE Trans. Automat. Sci. Engrg. 6 (2009), 2, 239-247.
DOI 10.1109/tase.2008.2009089
[20] Garcia, S., Molina, D., Lozano, M., Herrera, F.:
A study on the use of non-parametric tests for analyzing the evolutionary algorithms behaviour: A case study on the CEC'2005 Special Session on Real Parameter Optimization. Springer Science Business Media, J Heuristics 15 (2008), 617-644.
DOI 10.1007/s10732-008-9080-4
[21] Gómez, E. J., Thomas, M. E. Hernando Pérez y:
The INCA system: A further step towards a telemedical artificial pancreas. IEEE Trans. Inform. Technol. Biomedicine 12 (2008), 4, 470-479.
DOI 10.1109/titb.2007.902162
[22] Guyton, J. R.:
A model of glucose-insulin homeostasis in man that incorporates the heterogeneous fast pool theory of pancreatic insulin realise. Diabetes (1978), 1027-1042.
DOI 10.2337/diabetes.27.10.1027
[23] Haidar, A., Wilinska, E. M., Graveston, J. A., Hovorka, R.:
Stochastic virtual population of subjects with type 1 diabetes for the assessment of closed-loop glucose controllers. IEEE Trans. Biomed. Engrg. 60 (2013), 12, 3524-3533.
DOI 10.1109/tbme.2013.2272736
[24] Harvey, R. A., Wang, Y., Grosman, B., Percival, M. W., Bevier, W., Finan, D. A., Zisser, H., Sebong, D. E., Jovanovic, L., III, F. J. Doyle, Dassau, E.:
Quest for the artificial pancreas: combining technology with treatment. In: IEEE Engrg. Medicine Biol. Magazine 29 (2010), 2, 53-62.
DOI 10.1109/memb.2009.935711
[25] Hovorka, R., Shojaee-Moradie, F., Carroll, P. V., Chassin, L. J., Gowrie, I. J., Jackson, N. C., Tudor, R. S., Umpleby, A. M., Jones, R. H.:
Partitioning glucose distribution/transport, disposal, and endogenous production during ivgtt. Amer. J. Physiol. Endocrinol. Metabol. 282 (2002), 5, E992-E1007.
DOI 10.1152/ajpendo.00304.2001
[26] Kennedy, J., Eberhart, R. C.:
Particle swarm optimization. In: Proc. IEEE Int. Conf. Neural Netw. 1995, pp. 1942-1948.
DOI 10.1109/icnn.1995.488968
[27] Lehmann, E. D., Deutsch, T.:
Physiological model of glucose-insulin interaction in type I diabetes mellitus. J. Biomedical Engrg. 14 (1992), 235-242.
DOI 10.1016/0141-5425(92)90058-s
[28] Lin, H. S., Liauh, W. H., Ho, S. J.:
OPSO: Orthogonal particle swarm optimization and its application to task assignment problems. IEEE Trans. Syst. Man Cybern. B 38 (2008), 2, 288-289.
DOI 10.1109/tsmca.2007.914796
[29] Man, C., Rizza, R., Cobelli:
Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Engrg. 54 (2007), 10, 1740-1749.
DOI 10.1109/tbme.2007.893506
[30] Pedersen, M. G., Toffolo, G. M., Cobelli:
Cellular modeling: insight into oral minimal models of insulin secretion. Amer. J. Physiol. Endocrinol. Metabol. 298 (2010), E597-E601.
DOI 10.1152/ajpendo.00670.2009
[31] Peng, B., Liu, B., Zhang, F., Wang, L.:
Differential evolution algorithm-based parameter estimation for chaotic systems. Chaos, Solitons Fractals 39 (2009), 2110-2118.
DOI 10.1016/j.chaos.2007.06.084
[32] Quiroz, G., Femat, R.:
On hyperglicemic glucose basal levels in Type 1 Diabetes Mellitus from dynamic analysis. Math. Biosciences 210 (2007), 554-575.
DOI 10.1016/j.mbs.2007.06.004
[33] Respondek, W.:
Geometry of static and dynamic feedback. In: Lectures given at the Summer School on Mathematics Control Theory, Trieste 2001 and Bedlewo-Warsaw 2002, Laboratoire de Mathématiques INSA, Rouen.
MR 1971960
[34] Sorensen, J. T.: A Physiology Model of Glucose Metabolism in Man And Its Use to Design and Asses Improved Insulin Therapies for Diabetes. Ph.D. Dissertation, Massachusetts Institute of Technology 1985.
[35] Tiran, J., Galle, K. R., Porte, Jr.:
A simulation model of extracellular glucose distribution in the human body. Ann. Biomedical Engrg. 3 (1975), 34-46.
DOI 10.1007/bf02584487
[36] Tuch, B., Dunlop, M., Research, J. Proietto. Diabetes: A guide for Postgraduates. Taylor and Francis e-Library, 2004.
[37] Visentin, R., Man, C. Dalla, Cobelli, C.:
One-day Bayesian cloning of type 1 diabetes subjects: Toward a single-day UVA/Padova type 1 diabetes simulator. IEEE Trans. Biomed. Engrg. 63 (2016), 11, 2416-2424.
DOI 10.1109/tbme.2016.2535241
[38] Wachowiak, M. P., Smolikova, R., Zheng, Y., Zurada, J. M., Elmaghraby, A. S.:
An approach to multimodal biomedical image registration utilizing particle swarm optimization multimodal function optimization based on particle swarm optimization. IEEE Trans. Evol. Comput. 8 (2004), 3, 289-301.
DOI 10.1109/tevc.2004.826068
[39] Wilinska, M. E., Hovorka, R.:
Simulation models for in silico testing of closed-loop glucose controllers in type 1 diabetes. Drug Discov, Today Dis. 5 (2008), 289-298.
DOI 10.1016/j.ddmod.2009.07.005
[40] Organization, World Health: Global Report in Diabetes. Printed in France, 2016.
[41] Zhan, C., Situ, W., Yeung, L. Fat, Tsang, P. Wai-Ming, YANG, G.:
A parameter estimation method for biological systems modeled by ODEs/DDEs models using spline approximation and differential evolution algorithm. IEEE Trans. Computat. Biology Biomath. 11 (2014), 1066-1076.
DOI 10.1109/tcbb.2014.2322360