Previous |  Up |  Next

Article

Keywords:
recursive least square; Kalman filter; modeling; complex processes
Summary:
In this investigation, a new algorithm is developed for the updating of a neural network. It is concentrated in a fuzzy transition between the recursive least square and extended Kalman filter algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be maintained. The advised algorithm has the advantage compared with the mentioned methods that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended algorithm is uniformly stable and its convergence is found. The new algorithm is employed for the modeling of two synthetic examples.
References:
[1] Alanis, A. Y., Ricalde, L. J., Simetti, C., Odone, F.: Neural model with particle swarm optimization Kalman learning for forecasting in smart grids. Math. Problems Engrg. (2013), 9 pages. DOI 10.1155/2013/197690
[2] Alanis, A. Y., Sanchez, E. N., Loukianov, A. G.: A wind speed neural model with particle swarm optimization Kalman learning. In: International Joint Conference on Neural Networks 2006, pp. 1993-2000.
[3] Alanis, A. Y., Simetti, C., Ricalde, L. J., Odone, F.: A wind speed neural model with particle swarm optimization Kalman learning. In: World Automation Congress 2012, pp. 1-5. MR 3063031
[4] Astrom, K. J., Wittenmark, B.: Adaptive Control. Second edition. Addison-Wesley Longman Publishing Co., Inc., Boston (1994).
[5] Bifet, A., Gavalda, R.: Kalman filters and adaptive windows for learning in data streams. In: Discovery Science (L. Todorovski, N. Lavrac, K. P. Jantke, eds.), Lecture Notes in Computer Science 4265 (2006), pp. 29-40, Springer, Berlin, Heidelberg. DOI 10.1007/11893318
[6] Čelikovský, S.: Topological equivalence and topological linearization of controlled dynamical systems. Kybernetika 31 (1995), 141-150. MR 1334506
[7] Cerrada, M., Li, C., Sanchez, R. V., Pacheco, F., Cabrera, D., Valente, J.: A fuzzy transition based approach for fault severity prediction in helical gearboxes. Fuzzy Sets and Systems 337 (2018), 52-73. DOI 10.1016/j.fss.2016.12.017 | MR 3766926
[8] Chen, G., Xie, Q., Shieh, L. S.: Fuzzy Kalman filtering. J. Inform. Sci. 109 (1998), 197-209. DOI 10.1016/s0020-0255(98)10002-6 | MR 1634612
[9] Coelho, J. K., Pena, M.\.D., Romero, O. J.: Pore-scale modeling of oil mobilization trapped in a square cavity. IEEE Latin Amer. Trans. 14 (2016), 4, 1800-1807. DOI 10.1109/tla.2016.7483518
[10] Deng, Z., Wang, X., Hong, Y.: Distributed optimisation design with triggers for disturbed continuous-time multi-agent systems. IET Control Theory Appl. 11 (2017), 2, 282-290. DOI 10.1049/iet-cta.2016.0795 | MR 3675134
[11] Dolinský, K., Čelikovský, S.: Kalman filter under nonlinear system transformations. In: American Control Conference 2012, pp. 4789-4794. DOI 10.1109/acc.2012.6315366
[12] Guo, S. M., Shieh, L. S., Chen, G., Coleman, N. P.: Observer-type Kalman innovation filter for uncertain linear systems. IEEE Trans. Aerospace Eelectron. Systems 37 (2001), 4, 1406-1418. DOI 10.1109/7.976975
[13] E.Guillermo, J., Castellanos, L. J. Ricalde, Sanchez, E. N., Alanis, A. Y.: Detection of heart murmurs based on radial wavelet neural network with Kalman learning. Neurocomputing 164 (2015), 307-317. DOI 10.1016/j.neucom.2014.12.059
[14] Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H.: Switching strategies to mitigate HIV mutation. IEEE Trans. Control Systems Technol. 22 (2014), 4, 1623-1628. DOI 10.1109/tcst.2013.2280920
[15] Hernandez-Vargas, E. A., Colaneri, P., Middleton, R. H.: Optimal therapy scheduling for a simplified HIV infection model. Automatica 49 (2013), 2874-2880. DOI 10.1016/j.automatica.2013.06.001 | MR 3084477
[16] Kalman, R. E.: A New approach to linear filtering and prediction problems. Trans. ASME, J. Basic Engrg. 82 (1960), 35-45. DOI 10.1115/1.3662552
[17] Khemchandani, R., Pal, A., Chandra, S.: Fuzzy least squares twin support vector clustering. Neural Computing Appl. 29 (2018), 553-563. DOI 10.1007/s00521-016-2468-4
[18] Lizasoain, I., Gomez, M.: Products of lattice-valued fuzzy transition systems and induced fuzzy transformation semigroups. Fuzzy Sets and Systems 317 (2017), 133-150. DOI 10.1016/j.fss.2017.01.006
[19] Liu, F., Zhao, R., Tan, T., Zhang, Q.: Existence and verification for decentralized nondeterministic discrete-event systems under bisimulation equivalence. Asian J. Control 18 (2016), 5, 1679-1687. DOI 10.1002/asjc.1253 | MR 3564277
[20] Ljung, L.: System Identification: Theory for the User. Prentice Hall PTR, Prentic Hall Inc., Upper Saddle River, New Jersey 1999.
[21] Lughofer, E.: Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications. Springer, Berlin, Heidelberg 2011.
[22] Lughofer, E.: Single-pass active learning with conflict and ignorance. Evolving Systems 3 (2012), 4, 251-271. DOI 10.1007/s12530-012-9060-7
[23] Lughofer, E., Weigl, E., Heidl, W., Eitzinger, C., Radauer, T.: Recognizing input space and target concept drifts in data streams with scarcely labeled and unlabelled instances. Inform. Sci. 355-356 (2016), 127-151. DOI 10.1016/j.ins.2016.03.034
[24] Mansouri, I., Gholampour, A., Kisi, O., Ozbakkaloglu, T.: Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques. Neural Computing Appl. 29 (2018), 873-888. DOI 10.1007/s00521-016-2492-4
[25] Nguyen, V. K., Klawonn, F., Mikolajczyk, R., Hernandez-Vargas, E. A.: Analysis of practical identifiability of a viral infection model. Plos One (2016), 1-16. DOI 10.1371/journal.pone.0167568
[26] Pratama, M., Lu, J., Anavatti, S., Lughofer, E., Lim, C. P.: An incremental meta-cognitive-based scaffolding fuzzy neural network. Neurocomputing 171 (2016), 89-105. DOI 10.1016/j.neucom.2015.06.022
[27] Rehák, B., Čelikovský, S.: Numerical method for the solution of the regulator equation with application to nonlinear tracking. Automatica 44 (2008), 1358-1365. DOI 10.1016/j.automatica.2007.10.015 | MR 2531803
[28] Rubio, J. J.: Least square neural network model of the crude oil blending process. Neural Networks 78 (2016), 88-96. DOI 10.1016/j.neunet.2016.02.006
[29] Rubio, J. J.: Stable Kalman filter and neural network for the chaotic systems identification. J. Franklin Inst. 354 (2017), 7444-7462. DOI 10.1016/j.jfranklin.2017.08.038
[30] Rubio, J. J.: SOFMLS: Online self-organizing fuzzy modified least square network. IEEE Trans. Fuzzy Systems 17 (2009), 6, 1296-1309. DOI 10.1109/tfuzz.2009.2029569
[31] Sanchez, E. N., Alanis, A. Y., Rico, J.: Electric load demand prediction using neural networks trained by Kalman filtering. In: IEEE International Conference on Neural Networks 2004, pp. 2111-2775. DOI 10.1109/ijcnn.2004.1381093
[32] Sun, X. M., Wang, X. F., Hong, Y., Xia, W.: Stabilization control design with parallel-triggering mechanism. IEEE Trans. Industr. Electron. 64 (2017), 3260-3267. DOI 10.1109/tie.2016.2637888
[33] Weng, Z., Chen, G., Shieh, L. S., Larsson, J.: Evolutionary programming Kalman filter. Inform. Sci. 129 (2000), 197-210. DOI 10.1016/s0020-0255(00)00064-5 | MR 1802157
[34] Wu, H., Deng, Y.: Logical characterizations of simulation and bisimulation for fuzzy transition systems. Fuzzy Sets and Systems 301 (2016), 19-36. DOI 10.1016/j.fss.2015.09.012 | MR 3537844
[35] Wu, H., Deng, Y.: Distribution-based behavioural distance for nondeterministic fuzzy transition systems. IEEE Trans. Fuzzy Systems 99 (2017), 1-1. DOI 10.1109/tfuzz.2017.2670605
[36] Wu, H., Chen, Y., Bu, T., Deng, Y.: Algorithmic and logical characterizations of bisimulations for non-deterministic fuzzy transition systems. Fuzzy Sets and Systems 333 (2017), 106-123. DOI 10.1016/j.fss.2017.02.008 | MR 3739684
[37] Xu, D., Wang, X., Hong, Y., Jiang, Z. P.: Global robust distributed output consensus of multi-agent nonlinear systems: an internal model approach. Systems Control Lett. 87 (2016), 64-69. DOI 10.1016/j.sysconle.2015.11.002 | MR 3433242
Partner of
EuDML logo