Previous |  Up |  Next

Article

Keywords:
discrete event dynamic systems; finite automata; static output feedback stabilization; semi-tensor product; output feedback feasible events
Summary:
In this paper, the static output feedback stabilization (SOFS) of deterministic finite automata (DFA) via the semi-tensor product (STP) of matrices is investigated. Firstly, the matrix expression of Moore-type automata is presented by using STP. Here the concept of the set of output feedback feasible events (OFFE) is introduced and expressed in the vector form, and the stabilization of DFA is defined in the sense of static output feedback (SOF) control. Secondly, SOFS problem of DFA is investigated within the framework of STP, including single-equilibrium-based SOFS, multi-equilibrium-based SOFS, and further limit cycle-based SOFS. Then the necessary and sufficient conditions for the existence of the three types SOFS are proposed respectively. Meanwhile the efficient and systematic procedures based on the matrix theory to seek the corresponding SOF controller are provided for the three types SOFS problem. Finally, two examples are presented to illustrate the effectiveness of the proposed approach.
References:
[1] Bof, N., Fornasini, E., Valcher, M.: Output feedback stabilization of Boolean control networks. Automatica 57 (2015), 21-28. DOI 10.1016/j.automatica.2015.03.032 | MR 3350669
[2] Cassandras, C., Lafortune, S.: Introduction to Discrete Event System. Second edition. Springer Science and Business Media, New York 2008. DOI 10.1007/978-0-387-68612-7 | MR 2364236
[3] Cheng, D.: Disturbance decoupling of Boolean control networks. IEEE Trans. Automat. Control 56 (2011), 2-10. DOI 10.1109/tac.2010.2050161 | MR 2777196
[4] Cheng, D., He, F., Qi, H., Xu, T.: Modeling, analysis and control of networked evolutionary games. IEEE Trans. Automat. Control 60 (2015), 2402-2415. DOI 10.1109/tac.2015.2404471 | MR 3393130
[5] Cheng, D., Qi, H.: Controllability and observability of Boolean control networks. Automatica 45 (2009), 1659-1667. DOI 10.1016/j.automatica.2009.03.006
[6] Cheng, D., Qi, H.: A linear representation of dynamics of Boolean networks. IEEE Trans. Automat. Control 55 (2010), 2251-2258. DOI 10.1109/tac.2010.2043294 | MR 2742217
[7] Daniel, R., Markus, L.: Automata with modulo counters and nondeterministic counter bounds. Kybernetika 50 (2014), 66-94. DOI 10.14736/kyb-2014-1-0066
[8] Fornasini, E., Valcher, M. E: On the periodic trajectories of Boolean control networks. Automatica 49 (2013), 1506-1509. DOI 10.1016/j.automatica.2013.02.027 | MR 3044035
[9] Holub, J.: The finite automata approaches in stringology. Kybernetika 48 (2012), 386-401.
[10] Han, X., Chen, Z., Liu, Z., al., et: Calculation of siphons and minimal siphons in Petri nets based on semi-tensor product of matrices. IEEE Trans. Systems, Man Cybernet.: Systems 47 (2017), 531-536. DOI 10.1109/tsmc.2015.2507162
[11] Han, X., Chen, Z, Liu, Z., al., et: The detection and stabilisation of limit cycle for deterministic finite automata. Int. Control 91 (2017), 4, 874-886. DOI 10.1080/00207179.2017.1295319 | MR 3772324
[12] Kobetski, A., Fabian, M: Time-optimal coordination of flexible manufacturing systems using deterministic finite automata and mixed integer linear programming. Discrete Event Dynamic Systems 19 (2009), 287-315. DOI 10.1007/s10626-009-0064-9 | MR 2519802
[13] Li, H., Wang, Y.: Output feedback stabilization control design for BCNs. Automatica 49 (2013), 3641-3645. DOI 10.1016/j.automatica.2013.09.023
[14] Li, Z., Qiao, Y., Qi, H., Cheng, D.: Stability of switched polynomial systems. J. Systems Science Complexity 21 (2008), 362-377. DOI 10.1007/s11424-008-9119-5
[15] Ozveren, C., Willsky, A.: Output stabilizability of discrete event dynamic systems. IEEE Trans. Automat. Control 19 (1991), 925-935. DOI 10.1109/9.133186 | MR 1116449
[16] Passino, K., Michel, A., Antsaklis, P.: Lyapunov stability of a class of discrete event systems. IEEE Trans. Automat. Control 39 (1994), 269-279. DOI 10.1109/9.272323 | MR 1265411
[17] Syrmos, V., Abdallah, C., Dorato, P., al., et: Static output feedback - A survey. Automatica 33 (1997), 125-137. DOI 10.1016/s0005-1098(96)00141-0 | MR 1436056
[18] Tiwari, S. P., Srivastava, A. K.: On a decomposition of fuzzy automata. Fuzzy Sets Systems 151 (2005), 503-511. DOI 10.1016/j.fss.2004.06.014
[19] Xu, X., Hong, Y.: Matrix expression and reachability analysis of finite automata. J. Control Theory Appl. 10 (2012), 210-215. DOI 10.1007/s11768-012-1178-4 | MR 2915184
[20] Xu, X., Zhang, Y., Hong, Y.: Matrix approach to stabilization of deterministic finite automata. In: Proc. American Control Conference, Washington 2013, pp. 3242-3247. DOI 10.1109/acc.2013.6580331
[21] Yan, Y., Chen, Z., Liu, Z.: Solving type-2 fuzzy relation equations via semi-tensor product of matrices. Control Theory Technol. 12 (2014), 173-186. DOI 10.1007/s11768-014-0137-7
Partner of
EuDML logo