[1] Balasubramaniam, P., Nagamani, G., Rakkiyappan, R.:
Passivity analysis for neural networks of neutral type with Markovian jumping parameters and time delay in the leakage term. Comm. Nonlinear Sci. Numerical Simul. 16 (2011), 4422-4437.
DOI 10.1016/j.cnsns.2011.03.028 |
MR 2806757
[3] Cao, J., Li, R.:
Fixed-time synchronization of delayed memristor-based recurrent neural networks. Science China Inform. Sci. 60 (2017), 032201.
DOI 10.1007/s11432-016-0555-2
[4] Cao, J., Rakkiyappan, R., Maheswari, K., Chandrasekar, A.:
Exponential $H_{\infty}$ filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities. Science China Inform. Sci. 59(2016), 3, 387-402.
DOI 10.1007/s11431-016-6006-5
[7] Haykin, S.: Neural Networks: a Comprehensive Foundation (revised ed.). Upper Saddle River, Prentice-Hall, NJ 1998.
[8] Hu, M., Cao, J., Hu, A.:
Exponential stability of discrete-time recurrent neural networks with time-varying delays in the leakage terms and linear fractional uncertainties. IMA J. Math. Control Inform. 31 (2014), 345-362.
DOI 10.1093/imamci/dnt014 |
MR 3264991
[9] Gu, K.:
An integral inequality in the stability problem of time delay systems. In: Proc. 39th IEEE Conference on Decision Control 2000, pp. 2805-2810.
DOI 10.1109/cdc.2000.914233
[11] Kwon, O., Lee, S., Park, Ju H.:
Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays. Physics Lett. A 374 (2010), 1232-1241.
DOI 10.1016/j.physleta.2010.01.007
[12] Kwon, O., Park, M., Park, Ju.H., Lee, S., Cha, E.:
Improved approaches to stability criteria for neural networks with time-varying delays. J. Franklin Inst. 350 (2013), 2710-2735.
DOI 10.1016/j.jfranklin.2013.06.014 |
MR 3146943
[14] Li, R., Cao, J.:
Dissipativity analysis of memristive neural networks with time-varying delays and randomly occurring uncertainties. Math. Methods Appl. Sci. 39 (2016), 11, 2896-2915.
DOI 10.1002/mma.3738 |
MR 3512738
[15] Li, R., Cao, J.:
Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term. Appl. Math. Comput. 278 (2016), 54-69.
DOI 10.1016/j.amc.2016.01.016 |
MR 3457642
[17] Li, X., Rakkiyappan, R.:
Stability results for Takagi-Sugeno fuzzy uncertain BAM neural networks with time delays in the leakage term. Neural Computing Appl. 22 (2013), S203-S219.
DOI 10.1007/s00521-012-0839-z
[18] Li, X., Song, S.:
Impulsive control for existence, uniqueness and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays. IEEE Trans. Neural Networks Learning Systems 24 (2013), 868-877.
DOI 10.1109/tnnls.2012.2236352
[19] Li, X., Song, S.:
Stabilization of delay systems: Delay-dependent impulsive control. IEEE Trans. Automat. Control 62 (2017), 406-411.
DOI 10.1109/tac.2016.2530041
[20] Li, H., Wang, C., Shi, P., Gao, H.:
New passivity results for uncertain discrete-time stochastic neural networks with mixed time delays. Neurocomputing 73 (2010), 3291-3299.
DOI 10.1016/j.neucom.2010.04.019
[22] Li, Y., Yang, L., Sun, L.:
Existence and exponential stability of an equilibrium point for fuzzy BAM neural networks with time-varying delays in leakage terms on time scales. Advances Diff. Equations 2013 (2013), 218.
DOI 10.1186/1687-1847-2013-218
[23] Liu, Y., D.Wang, Z., Liu, X. H.:
Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Networks 19 (2006), 5, 667-675.
DOI 10.1016/j.neunet.2005.03.015
[24] Mao, X.: Stochastic Differential Equations with their Applications. Horwood, Chichester 1997.
[25] Michel, A., Liu, D.: Qualitative Analysis and Synthesis of Recurrent Neural Networks. Marcel Dekker, New York 2002.
[26] Pan, L., Cao, J.:
Robust stability for uncertain stochastic neural network with delay and impulses. Neurocomputing 94 (2012), 102-110.
DOI 10.1016/j.neucom.2012.04.013
[27] Raja, R., Raja, U. Karthik, Samidurai, R., Leelamani, A.:
Dissipativity of discrete-time BAM stochastic neural networks with Markovian switching and impulses. J. Franklin Inst. 350 (2013), 3217-3247.
DOI 10.1016/j.jfranklin.2013.08.003 |
MR 3123415
[28] Raja, R., Raja, U. Karthik, Samidurai, R., Leelamani, A.:
Passivity analysis for uncertain discrete time stochastic BAM neural networks with time-varying delays. Neural Computing Appl. 25 (2014), 751-766.
DOI 10.1007/s00521-014-1545-9
[29] Raja, R., Samidurai, R.:
New delaydependent robust asymptotic stability for uncertain stochastic recurrent neural networks with multiple time varying delays. J. Franklin Inst. 349 (2012), 2108-2123.
DOI 10.1016/j.jfranklin.2012.03.007 |
MR 2935279
[30] Rubio, J.:
Interpolation neural network model of a manufactured wind turbine. Neural Computing Appl. 28 (2017), 2017-2028.
DOI 10.1007/s00521-015-2169-4
[33] Tu, Z., Cao, J., Alsaedi, A., Hayat, T:
Global dissipativity analysis for delayed quaternion-valued neural networks. Neural Networks 89 (2017), 97-104.
DOI 10.1016/j.neunet.2017.01.006
[34] Wu, Z., Park, Ju H., Su, H., Chu, J.:
New results on exponential passivity of neural networks with time-varying delays. Nonlinear Analysis: Real World Appl. 13 (2012), 1593-1599.
DOI 10.1016/j.nonrwa.2011.11.017 |
MR 2890995
[35] Yang, C., Huang, T.:
Improved stability criteria for a class of neural networks with variable delays and impulsive perturbations. Appl. Math. Comput. 243 (2014), 923-935.
DOI 10.1016/j.amc.2014.06.045
[36] Zhao, Z., Song, Q., He, S.:
Passivity analysis of stochastic neural networks with time-varying delays and leakage delay. Neurocomputing 47 (2015), 1-10.
DOI 10.1016/j.neucom.2012.08.049
[37] Zheng, C., Gong, C., Wang, Z.:
New passivity conditions with fewer slack variables for uncertain neural networks with mixed delays. Neurocomputing 118 (2013), 237-244.
DOI 10.1016/j.neucom.2013.02.032