Previous |  Up |  Next

Article

Keywords:
infinite sum condition; retarded argument; advanced argument; oscillatory solution; nonoscillatory solution
Summary:
This paper is concerned with the oscillatory behavior of first-order nonlinear difference equations with variable deviating arguments. The corresponding difference equations of both retarded and advanced type are studied. Examples illustrating the results are also given.
References:
[1] Berezansky, L., Braverman, E.: On existence of positive solutions for linear difference equations with several delays. Adv. Dyn. Syst. Appl. 1 (2006), 29-47. MR 2287633 | Zbl 1124.39002
[2] Chatzarakis, G. E., Koplatadze, R., Stavroulakis, I. P.: Optimal oscillation criteria for first order difference equations with delay argument. Pac. J. Math. 235 (2008), 15-33. DOI 10.2140/pjm.2008.235.15 | MR 2379767 | Zbl 1153.39010
[3] Chatzarakis, G. E., Pinelas, S., Stavroulakis, I. P.: Oscillations of difference equations with several deviated arguments. Aequationes Math. 88 (2014), 105-123. DOI 10.1007/s00010-013-0238-2 | MR 3250787 | Zbl 1306.39007
[4] Chatzarakis, G. E., Stavroulakis, I. P.: Oscillations of first order linear delay difference equations. Aust. J. Math. Anal. Appl. (electronic only) 3 (2006), Article ID 14, 11 pages. MR 2223018 | Zbl 1096.39003
[5] Dix, J. P., Dix, J. G.: Oscillations of solutions to nonlinear first-order delay differential equations. Involve 9 (2016), 465-482. DOI 10.2140/involve.2016.9.465 | MR 3509339 | Zbl 06590119
[6] Erbe, L. H., Kong, Q., Zhang, B. G.: Oscillation Theory for Functional-Differential Equations. Pure and Applied Mathematics 190. Marcel Dekker, New York (1994). MR 1309905 | Zbl 0821.34067
[7] Erbe, L. H., Zhang, B. G.: Oscillation of discrete analogues of delay equations. Differ. Integral Equ. 2 (1989), 300-309. MR 0983682 | Zbl 0723.39004
[8] Ladas, G.: Explicit conditions for the oscillation of difference equations. J. Math. Anal. Appl. 153 (1990), 276-287. DOI 10.1016/0022-247X(90)90278-N | MR 1080131 | Zbl 0718.39002
[9] Ladas, G., Philos, C. G., Sficas, Y. G.: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simulation 2 (1989), 101-111. DOI 10.1155/S1048953389000080 | MR 1010549 | Zbl 0685.39004
[10] Ladde, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Pure and Applied Mathematics 110. Marcel Dekker, New York (1987). MR 1017244 | Zbl 0622.34071
[11] Li, B.: Oscillation of first order delay differential equations. Proc. Am. Math. Soc. 124 (1996), 3729-3737. DOI 10.1090/S0002-9939-96-03674-X | MR 1363175 | Zbl 0865.34057
[12] Li, X., Zhu, D.: Oscillation of advanced difference equations with variable coefficients. Ann. Differ. Equations 18 (2002), 254-263. MR 1940383 | Zbl 1010.39001
[13] Luo, X. N., Zhou, Y., Li, C. F.: Oscillation of a nonlinear difference equation with several delays. Math. Bohem. 128 (2003), 309-317. MR 2012607 | Zbl 1055.39015
[14] Tang, X. H., Yu, J. S.: Oscillation of delay difference equation. Comput. Math. Appl. 37 (1999), 11-20. DOI 10.1016/S0898-1221(99)00083-8 | MR 1688201 | Zbl 0937.39012
[15] Tang, X. H., Zhang, R. Y.: New oscillation criteria for delay difference equations. Comput. Math. Appl. 42 (2001), 1319-1330. DOI 10.1016/S0898-1221(01)00243-7 | MR 1861531 | Zbl 1002.39022
[16] Wang, X.: Oscillation of delay difference equations with several delays. J. Math. Anal. Appl. 286 (2003), 664-674. DOI 10.1016/S0022-247X(03)00508-0 | MR 2008855 | Zbl 1033.39017
[17] Yan, W., Meng, Q., Yan, J.: Oscillation criteria for difference equation of variable delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A (2006), Part 2, suppl., 641-647. MR 2219618
[18] Zhang, B. G., Zhou, Y.: Oscillations of difference equations with several delays. Comput. Math. Appl. 44 (2002), 817-821. DOI 10.1016/S0898-1221(02)00193-1 | MR 1925823 | Zbl 1035.39010
Partner of
EuDML logo