Previous |  Up |  Next

Article

Keywords:
Dirichlet series; Banach algebra; topological zero divisor; division algebra; continuous linear functional; total set
Summary:
Let $F$ be a class of entire functions represented by Dirichlet series with complex frequencies $\sum a_k {\rm e}^{\langle \lambda ^k, z\rangle }$ for which $(|\lambda ^k|/{\rm e})^{|\lambda ^k|} k!|a_k|$ is bounded. Then $F$ is proved to be a commutative Banach algebra with identity and it fails to become a division algebra. $F$ is also proved to be a total set. Conditions for the existence of inverse, topological zero divisor and continuous linear functional for any element belonging to $F$ have also been established.
References:
[1] Khoi, L. H.: Coefficient multipliers for some classes of Dirichlet series in several complex variables. Acta Math. Vietnam. 24 (1999), 169-182. MR 1710776 | Zbl 0942.32001
[2] Kumar, N., Manocha, G.: A class of entire Dirichlet series as an FK-space and a Fréchet space. Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 1571-1578. DOI 10.1016/S0252-9602(13)60105-8 | MR 3116603 | Zbl 1313.30007
[3] Kumar, N., Manocha, G.: On a class of entire functions represented by Dirichlet series. J. Egypt. Math. Soc. 21 (2013), 21-24. DOI 10.1016/j.joems.2012.10.008 | MR 3040754 | Zbl 1277.30004
[4] Kumar, N., Manocha, G.: Certain results on a class of entire functions represented by Dirichlet series having complex frequencies. Acta Univ. M. Belii, Ser. Math. 23 (2015), 95-100. MR 3373834 | Zbl 1336.30004
[5] Larsen, R.: Banach Algebras---An Introduction. Pure and Applied Mathematics 24. Marcel Dekker, New York (1973). MR 0487369 | Zbl 0264.46042
[6] Larsen, R.: Functional analysis---An Introduction. Pure and Applied Mathematics 15. Marcel Dekker, New York (1973). MR 0461069 | Zbl 0261.46001
[7] Srivastava, R. K.: Some growth properties of a class of entire Dirichlet series. Proc. Natl. Acad. Sci. India, Sect. A 61 (1991), 507-517. MR 1169262 | Zbl 0885.30004
[8] Srivastava, R. K.: On a paper of Bhattacharya and Manna. Internal Report (1993), IC/93/417.
Partner of
EuDML logo