Article
Keywords:
reflexive space of operators; order-preserving map
Summary:
We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(\scr {H}_1,\scr {H}_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal M})$ of subspaces determined by ${\mathcal M}$ with $P\leq \psi _1(P,Q)$ and $Q\leq \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal M})$, and such that an operator $T\in {\mathcal B}(\scr {H}_1,\scr {H}_2)$ lies in ${\mathcal M}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal M})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
References:
[3] Erdos, J. A., Power, S. C.:
Weakly closed ideals of nest algebras. J. Oper. Theory 7 (1982), 219-235.
MR 0658610 |
Zbl 0523.47027
[9] Loginov, A. I., Sul'man, V. S.:
Hereditary and intermediate reflexivity of $W\sp*$-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 Russian.
MR 0405124 |
Zbl 0327.46073