Previous |  Up |  Next

Article

Keywords:
reflexive space of operators; order-preserving map
Summary:
We show that for a linear space of operators ${\mathcal M}\subseteq {\mathcal B}(\scr {H}_1,\scr {H}_2)$ the following assertions are equivalent. (i) ${\mathcal M} $ is reflexive in the sense of Loginov-Shulman. (ii) There exists an order-preserving map $\Psi =(\psi _1,\psi _2)$ on a bilattice ${\rm Bil}({\mathcal M})$ of subspaces determined by ${\mathcal M}$ with $P\leq \psi _1(P,Q)$ and $Q\leq \psi _2(P,Q)$ for any pair $(P,Q)\in {\rm Bil}({\mathcal M})$, and such that an operator $T\in {\mathcal B}(\scr {H}_1,\scr {H}_2)$ lies in ${\mathcal M}$ if and only if $\psi _2(P,Q)T\psi _1(P,Q)=0$ for all $(P,Q)\in {\rm Bil}( {\mathcal M})$. This extends the Erdos-Power type characterization of weakly closed bimodules over a nest algebra to reflexive spaces.
References:
[1] Han, D. G.: On $\scr A$-submodules for reflexive operator algebras. Proc. Am. Math. Soc. 104 (1988), 1067-1070. DOI 10.2307/2047592 | MR 0969048 | Zbl 0694.47031
[2] Erdos, J. A.: Reflexivity for subspace maps and linear spaces of operators. Proc. Lond. Math. Soc., III Ser. 52 (1986), 582-600. DOI 10.1112/plms/s3-52.3.582 | MR 0833651 | Zbl 0609.47053
[3] Erdos, J. A., Power, S. C.: Weakly closed ideals of nest algebras. J. Oper. Theory 7 (1982), 219-235. MR 0658610 | Zbl 0523.47027
[4] Hadwin, D.: A general view of reflexivity. Trans. Am. Math. Soc. 344 (1994), 325-360. DOI 10.1090/S0002-9947-1994-1239639-4 | MR 1239639 | Zbl 0802.46010
[5] Halmos, P. R.: Reflexive lattices of subspaces. J. Lond. Math. Soc., II. Ser. 4 (1971), 257-263. DOI 10.1112/jlms/s2-4.2.257 | MR 0288612 | Zbl 0231.47003
[6] Kliś-Garlicka, K.: Reflexivity of bilattices. Czech. Math. J. 63 (2013), 995-1000. DOI 10.1007/s10587-013-0067-4 | MR 3165510 | Zbl 1313.47024
[7] Kliś-Garlicka, K.: Hyperreflexivity of bilattices. Czech. Math. J. 66 (2016), 119-125. DOI 10.1007/s10587-016-0244-3 | MR 3483227 | Zbl 06587878
[8] Li, P., Li, F.: Jordan modules and Jordan ideals of reflexive algebras. Integral Equations Oper. Theory 74 (2012), 123-136. DOI 10.1007/s00020-012-1982-8 | MR 2969043 | Zbl 1286.47046
[9] Loginov, A. I., Sul'man, V. S.: Hereditary and intermediate reflexivity of $W\sp*$-algebras. Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 Russian. MR 0405124 | Zbl 0327.46073
[10] Shulman, V., Turowska, L.: Operator synthesis I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293-331. DOI 10.1016/S0022-1236(03)00270-2 | MR 2044225 | Zbl 1071.47066
Partner of
EuDML logo