Previous |  Up |  Next

Article

Keywords:
stochastic order; parallel system; series system; majorization; multivariate chain majorization; Pareto type distribution; $T$-transform matrix
Summary:
We focus on stochastic comparisons of lifetimes of series and parallel systems consisting of independent and heterogeneous new Pareto type components. Sufficient conditions involving majorization type partial orders are provided to obtain stochastic comparisons in terms of various magnitude and dispersive orderings which include usual stochastic order, hazard rate order, dispersive order and right spread order. The usual stochastic order of lifetimes of series systems with possibly different scale and shape parameters is studied when its matrix of parameters changes to another matrix in certain sense.
References:
[1] Arnold, B. C.: Majorization: Here, there and everywhere. Stat. Sci. 22 (2007), 407-413. DOI 10.1214/0883423060000000097 | MR 2416816 | Zbl 1246.01010
[2] Balakrishnan, N., Haidari, A., Masoumifard, K.: Stochastic comparisons of series and parallel systems with generalized exponential components. IEEE Trans. Reliab. 64 (2015), 333-348. DOI 10.1109/tr.2014.2354192
[3] Balakrishnan, N., (eds.), C. R. Rao: Order Statistics: Applications. Handbook of Statistics 17, North-Holland, Amsterdam (1998). DOI 10.1016/S0169-7161(98)17001-3 | MR 1672283 | Zbl 0897.00016
[4] Balakrishnan, N., Zhao, P.: Hazard rate comparison of parallel systems with heterogeneous gamma components. J. Multivariate Anal. 113 (2013), 153-160. DOI 10.1016/j.jmva.2011.05.001 | MR 2984362 | Zbl 1253.60022
[5] Barmalzan, G., Najafabadi, A. T. Payandeh, Balakrishnan, N.: Likelihood ratio and dispersive orders for smallest order statistics and smallest claim amounts from heterogeneous Weibull sample. Stat. Probab. Lett. 110 (2016), 1-7. DOI 10.1016/j.spl.2015.11.009 | MR 3474731 | Zbl 06572266
[6] Bourguignon, M., Saulo, H., Fernandez, R. Nobre: A new Pareto-type distribution with applications in reliability and income data. Physica A: Statistical Mechanics and its Applications 457 (2016), 166-175. DOI 10.1016/j.physa.2016.03.043 | MR 3493327
[7] David, H. A., Nagaraja, H. N.: Order Statistics. Wiley Series in Probability and Statistics, John Wiley & Sons, Chichester (2003). DOI 10.1002/0471722162 | MR 1994955 | Zbl 1053.62060
[8] Dykstra, R., Kochar, S., Rojo, J.: Stochastic comparisons of parallel systems of heterogeneous exponential components. J. Stat. Plann. Inference 65 (1997), 203-211. DOI 10.1016/S0378-3758(97)00058-X | MR 1622774 | Zbl 0915.62044
[9] Fang, L., Balakrishnan, N.: Likelihood ratio order of parallel systems with heterogeneous Weibull components. Metrika 79 (2016), 693-703. DOI 10.1007/s00184-015-0573-5 | MR 3518582 | Zbl 1373.62494
[10] Fang, L., Balakrishnan, N.: Ordering results for the smallest and largest order statistics from independent heterogeneous exponential-Weibull random variables. Statistics 50 (2016), 1195-1205. DOI 10.1080/02331888.2016.1142545 | MR 3552988 | Zbl 06673721
[11] Fang, L., Wang, Y.: Comparing lifetimes of series and parallel systems with heterogeneous Fréchet components. Symmetry 9 (2017), Paper No. 10, 9 pages. DOI 10.3390/sym9010010 | MR 3618925
[12] Fang, L., Zhang, X.: New results on stochastic comparison of order statistics from heterogeneous Weibull populations. J. Korean Stat. Soc. 41 13-16 (2012). DOI 10.1016/j.jkss.2011.05.004 | MR 2933211 | Zbl 1296.62106
[13] Fang, L., Zhang, X.: Stochastic comparisons of parallel systems with exponentiated Weibull components. Stat. Probab. Lett. 97 (2015), 25-31. DOI 10.1016/j.spl.2014.10.017 | MR 3299747 | Zbl 1314.60063
[14] Fang, L., Zhu, X., Balakrishnan, N.: Stochastic comparisons of parallel and series systems with heterogeneous Birnbaum-Saunders components. Stat. Probab. Lett. 112 131-136 (2016). DOI 10.1016/j.spl.2016.01.021 | MR 3475497 | Zbl 1338.60051
[15] Gupta, N., Patra, L. K., Kumar, S.: Stochastic comparisons in systems with Frèchet distributed components. Oper. Res. Lett. 43 612-615 (2015). DOI 10.1016/j.orl.2015.09.009 | MR 3423556
[16] Hardy, G. H., Littlewood, J. E., Polya, G.: Inequalities. University Press, Cambridge (1934). MR 0944909 | Zbl 0010.10703
[17] Khaledi, B.-E., Farsinezhad, S., Kochar, S. C.: Stochastic comparisons of order statistics in the scale model. J. Stat. Plann. Inference 141 (2011), 276-286. DOI 10.1016/j.jspi.2010.06.006 | MR 2719493 | Zbl 1207.62108
[18] Khaledi, B.-E., Kochar, S.: Stochastic orderings of order statistics of independent random variables with different scale parameters. Commun. Stat., Theory Methods 36 (2007), 1441-1449. DOI 10.1080/03610920601077212 | MR 2405269 | Zbl 1119.60013
[19] Marshall, A. W., Olkin, I.: Inequalities: Theory of Majorization and Its Applications. Mathematics in Science and Engineering 143, Academic Press, New York (1979). DOI 10.1016/c2009-0-22048-4 | MR 0552278 | Zbl 0437.26007
[20] Nadarajah, S., Jiang, X., Chu, J.: Comparisons of smallest order statistics from Pareto distributions with different scale and shape parameters. Ann. Oper. Res. 254 191-209 (2017). DOI 10.1007/s10479-017-2444-0 | MR 3665743 | Zbl 06764423
[21] Pečarić, J. E., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings, and Statistical Applications. Mathematics in Science and Engineering 187, Academic Press, Boston (1992). DOI 10.1016/s0076-5392(08)x6162-4 | MR 1162312 | Zbl 0749.26004
[22] Shaked, M., Shanthikumar, J. G.: Stochastic Orders. Springer Series in Statistics, New York (2007). DOI 10.1007/978-0-387-34675-5 | MR 2265633 | Zbl 1111.62016
[23] Zhao, P., Balakrishnan, N.: Dispersive ordering of fail-safe systems with heterogeneous exponential components. Metrika 74 203-210 (2011). DOI 10.1007/s00184-010-0297-5 | MR 2822156 | Zbl 05963332
Partner of
EuDML logo