Previous |  Up |  Next

Article

Summary:
Mikroskopické techniky v biologii zažívají v posledních letech neobyčejný pokrok a s tím související ocenění. V roce 2008 byla Nobelova cena udělena za objev a práce na zeleném fluorescenčním proteinu, v roce 2014 obdrželi Nobelovu cenu Eric Betzig, Stefan W. Hell a William E. Moerner za práce v oblasti superrezoluční optické mikroskopie. V roce 2017 se k nim připojila elektronová mikroskopie, když se laureáty Nobelovy ceny za chemii stali průkopníci v oblasti elektronové mikroskopie — Jacques Dubochet, Richard Henderson a Joachim Frank. Jejich zásluhou byly položeny zhruba před 35 lety základy moderní elektronové mikroskopie pro použití ve strukturní biologii — takzvané kryoelektronové mikroskopie (kryo-EM), která v současné době zažívá neuvěřitelný rozmach. Zavedení kamer s přímou detekcí elektronů a dalších technologických vylepšení umožňuje pomocí kryo-EM určovat struktury biologických komplexů s rozlišením lepším než 2 Å, tedy na úrovni atomů. Bez průkopnických prací letošních tří laureátů by ovšem nic z toho nebylo možné.
References:
[1] Adrian, M., Dubochet, J., Lepault, J., Mcdowall, A. W.: Cryo-electron microscopy of viruses. Nature 308 (1984), 32–36. DOI 10.1038/308032a0
[2] Banerjee, S., Bartesaghi, A., Merk, A., Rao, P., Bulfer, S. L., Yan, Y., Green, N., Mroczkowski, B., Neitz, R. J., Wipf, P., Falconieri, V., Deshaies, R. J., Milne, J. L., Huryn, D., Arkin, M., Subramaniam, S.: 2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351 (2016), 871–875. DOI 10.1126/science.aad7974
[3] Bartesaghi, A., Merk, A., Banerjee, S., Matthies, D., Wu, X., Milne, J. L., Subramaniam, S.: 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348 (2015), 1147–1151. DOI 10.1126/science.aab1576
[4] Brüggeller, P., Mayer, E.: Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288 (1980), 569–571. DOI 10.1038/288569a0
[5] Burton, E. F., Olivier, W. F.: The crystal structure of ice at low temperature. Proc. R. Soc. Lond. A153 (1935), 166–172.
[6] Campbell, M. G., Veesler, D., Cheng, A., Potter, C. S., Carragher, B.: 2.8 A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. Elife 4 (2015) [online], article no. e06380, DOI: 10.7554/eLife.06380. DOI 10.7554/eLife.06380
[7] Danev, R., Baumeister, W.: Cryo-EM single particle analysis with the Volta phase plate. Elife 5 (2016) [online], article no. e13046, DOI: 10.7554/eLife.13046. DOI 10.7554/eLife.13046
[8] Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M., Baumeister, W.: Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl. Acad. Sci. USA 111 (2014), 15635–15640. DOI 10.1073/pnas.1418377111
[9] Dubochet, J., Mcdowall, A. W.: Vitrification of pure water for electron microscopy. J. Microsc. 124 (1981), 3–4. DOI 10.1111/j.1365-2818.1981.tb02483.x
[10] Erni, R., Rossell, M. D., Kisielowski, C., Dahmen, U.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102 (2009) [online], 096101. DOI 10.1103/PhysRevLett.102.096101
[11] Fischer, N., Konevega, A. L., Wintermeyer, W., Rodnina, M. V., Stark, H.: Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466 (2010), 329–333. DOI 10.1038/nature09206
[12] Fukami, A., Adachi, K.: A new method of preparation of a self-perforated micro plastic grid and its application. J. Electron Microsc. (Tokyo) 14 (1965), 112–118.
[13] Gao, Y., Cao, E., Julius, D., Cheng, Y.: TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534 (2016), 347–351. DOI 10.1038/nature17964
[14] Khoshouei, M., Radjainia, M., Baumeister, W., Danev, R.: Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate. Nat. Commun. 8 (2017) [online], 16099. DOI 10.1038/ncomms16099
[15] Krynicky, I., Green, C. D., Sawyer, D. W.: Pressure and temperature dependence of self-diffusion in water. Faraday Discuss. Chem. Soc. 66 (1978), 199–208.
[16] Li, H., O’Donoghue, A. J., van der Linden, W. A., Xie, S. C., Yoo, E., Foe, I. T., Tilley, L, Craik, C. S., Da Fonseca, P. C., Bogyo, M.: Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 530 (2016), 233–236. DOI 10.1038/nature16936
[17] Mayer, E.: Vitrification of pure liquid water. J. Microsc. 140 (1985), 3–15. DOI 10.1111/j.1365-2818.1985.tb02656.x
[18] Merk, A., Bartesaghi, A., Banerjee, S., Falconieri, V., Rao, P., Davis, M. I., Pragani, R., Boxer, M. B., Earl, L. A., Milne, J. L. S., Subramaniam, S.: Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165 (2016), 1698–1707. DOI 10.1016/j.cell.2016.05.040
[19] Penczek, P. A., Frank, J., Spahn, C. M.: A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. J. Struct. Biol. 154 (2006), 184–194. DOI 10.1016/j.jsb.2005.12.013
[20] Scherzer, O.: Sphärische und chromatische Korrektur von Elektronenlinsen. Optik 2 (1947), 114–132.
[21] Subramaniam, S., Earl, L. A., Falconieri, V., Milne, J. L., Egelman, E. H., E. H.: Resolution advances in cryo-EM enable application to drug discovery. Curr. Opin. Struct. Biol. 41 (2016), 194–202. DOI 10.1016/j.sbi.2016.07.009
[22] Yannas, I.: Vitrification temperature of water. Science 160 (1968), 298–299. DOI 10.1126/science.160.3825.298
Partner of
EuDML logo