[1] Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.:
Local geometric properties of real submanifolds in complex space. Bull. Amer. Math. Soc. (N.S.) 37 (3) (2000), 309–336.
DOI 10.1090/S0273-0979-00-00863-6 |
MR 1754643
[2] Bedford, E., Pinchuk, S.I.:
Convex domains with noncompact groups of automorphisms. Mat. Sb. 185 (1994), 3–26.
MR 1275970
[3] Bloom, T., Graham, I.:
On “type” conditions for generic real submanifolds of $C^{n}$. Invent. Math. 40 (3) (1977), 217–243.
DOI 10.1007/BF01425740 |
MR 0589930
[4] Cartan, E.:
Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. Ann. Math. Pura Appl. 11 (1932), 17–90.
DOI 10.1007/BF02417822 |
MR 1553196
[5] Cartan, E.:
Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, II. Ann. Scuola Norm. Sup. Pisa 1 (1932), 333–354.
MR 1556687
[6] Catlin, D.:
Boundary invariants of pseudoconvex domains. Ann. of Math. (2) 120 (1984), 529–586.
MR 0769163 |
Zbl 0583.32048
[8] D’Angelo, J.:
Orders od contact, real hypersurfaces and applications. Ann. of Math. (2) 115 (1982), 615–637.
MR 0657241
[10] Kohn, J.J.:
Boundary behaviour of $\bar{\partial }$ on weakly pseudoconvex manifolds of dimension two. J. Differential Geom. 6 (1972), 523–542.
DOI 10.4310/jdg/1214430641 |
MR 0322365
[13] Kolář, M., Kossovskiy, I., Zaitsev, D.:
Normal forms in Cauchy-Riemann geometry. Analysis and geometry in several complex variables, vol. 681, Contemp. Math., 2017, pp. 153–177.
MR 3603888 |
Zbl 1362.32023
[15] Kolář, M., Meylan, F.: Nonlinear CR automorphisms of Levi degenerate hypersurfaces and a new gap phenomenon. arXiv : 1703.07123 [CV].
[16] Kolář, M., Meylan, F.:
Chern-Moser operators and weighted jet determination problems. Geometric analysis of several complex variables and related topics, vol. 550, Contemp. Math., 2011, pp. 75–88.
MR 2868555 |
Zbl 1232.32024
[19] Poincaré, H.:
Les fonctions analytique de deux variables et la représentation conforme. Rend. Circ. Mat. Palermo 23 (1907), 185–220.
DOI 10.1007/BF03013518