[2] Alziary, B., Décamps, J.-P., Koehl, P.-F.:
A P.D.E. approach to Asian options: analytical and numerical evidence. J. Bank. Financ. 21 (1997), 613-640.
DOI 10.1016/S0378-4266(96)00057-X
[5] Ciarlet, P. G.:
The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications 4, North-Holland Publishing Company, Amsterdam (1978).
MR 0520174 |
Zbl 0383.65058
[9] Dubois, F., Lelièvre, T.:
Efficient pricing of Asian options by the PDE approach. J. Comput. Finance 8 (2005), 55-63.
DOI 10.21314/jcf.2005.138
[11] Hale, J. K.:
Ordinary Differential Equations. Pure and Applied Mathematics 21, Wiley-Interscience a division of John Wiley & Sons, New York (1969).
MR 0419901 |
Zbl 0186.40901
[13] Haug, E. G.: The Complete Guide to Option Pricing Formulas. McGraw-Hill, New York (2006).
[16] Hozman, J.:
Analysis of the discontinuous Galerkin method applied to the European option pricing problem. AIP Conference Proceedings 1570 (2013), 227-234.
DOI 10.1063/1.4854760
[17] Hozman, J., Tichý, T.:
Black-Scholes option pricing model: Comparison of $h$-convergence of the DG method with respect to boundary condition treatment. ECON - Journal of Economics, Management and Business 24 (2014), 141-152.
DOI 10.7327/econ.2014.03.03
[20] Hozman, J., Tichý, T., Cvejnová, D.:
A discontinuous Galerkin method for two-dimensional PDE models of Asian options. AIP Conference Proceedings 1738 (2016), Article no. 080011.
DOI 10.1063/1.4951846
[21] J. E. Ingersoll, Jr.: Theory of Financial Decision Making. Rowman & Littlefield Publishers, New Jersey (1987).
[24] Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation. Conf. Report, National Topical Meeting on Mathematical Models and Computational Techniques for Analysis of Nuclear Systems, Ann Arbor 1973 Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, New Mexico (1973).
[25] Rektorys, K.:
Variational Methods in Engineering Problems and in Problems of Mathematical Physics. Nakladatelsví Technické Literatury, Praha Czech (1974).
MR 0487652 |
Zbl 0371.35001
[26] Rivière, B.:
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Frontiers in Applied Mathematics 35, Society for Industrial and Applied Mathematics, Philadelphia (2008).
DOI 10.1137/1.9780898717440 |
MR 2431403 |
Zbl 1153.65112
[28] Večeř, J.:
A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 4 (2001), 105-113.
DOI 10.21314/jcf.2001.064
[29] Večeř, J.: Unified pricing of Asian options. Risk 15 (2002), 113-116.
[30] Wilmott, P., Dewynne, J., Howison, J.:
Option Pricing: Mathematical Models and Computation. Financial Press, Oxford (1993).
Zbl 0844.90011
[32] Zvan, R., Forsyth, P. A., Vetzal, K.:
Robust numerical methods for PDE models of Asian options. J. Comput. Finance 1 (1998), 39-78.
DOI 10.21314/jcf.1997.006