[1] Agarwal R.P., O'Regan D.:
Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publisher, Glasgow, 2001.
MR 1845855 |
Zbl 0988.34002
[3] Cabada A., Fialho J., Minhós F.:
Non ordered lower and upper solutions to fourth order functional BVP. Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I, 209–218.
MR 2987401
[5] Corduneanu C.:
Integral Equations and Applications. Cambridge University Press, Cambridge, 1991.
MR 1109491 |
Zbl 1156.45001
[7] Fialho J., Minhós F.:
Higher order functional boundary value problems without monotone assumptions. Bound. Value Probl. 2013, 2013:81.
MR 3055842 |
Zbl 1293.34027
[8] Fu D., Ding W.:
Existence of positive solutions of third-order boundary value problems with integral boundary conditions in Banach spaces. Adv. Difference Equ. 2013, 2013:65.
MR 3044690
[10] Graef J., Kong L., Minhós F.:
Higher order $\phi $-Laplacian BVP with generalized Sturm-Liouville boundary conditions. Differ. Equ. Dyn. Syst. 18 (2010), no. 4, 373–383.
DOI 10.1007/s12591-010-0071-1 |
MR 2775180
[11] Han J., Liu Y., Zhao J.:
Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations. Appl. Math. Comput. 218 (2012), 5002–5009.
MR 2870024
[12] Jiang J., Liu L., Wu Y.:
Second-order nonlinear singular Sturm Liouville problems with integral boundary conditions. Appl. Math. Comput. 215 (2009), 1573–1582.
MR 2571646
[14] Lu H., Sun L., Sun J.:
Existence of positive solutions to a non-positive elastic beam equation with both ends fixed. Bound. Value Probl. 2012, 2012:56.
MR 2942969
[15] Minhós F., Fialho J.:
On the solvability of some fourth-order equations with functional boundary conditions. Discrete Contin. Dyn. Syst., 2009, suppl., 564–573.
MR 2648180 |
Zbl 1192.34023
[16] Pei M., Chang S., Oh Y.S.:
Solvability of right focal boundary value problems with superlinear growth conditions. Bound. Value Probl. 2012, 2012:60.
MR 2965952
[17] Yoruk F., Aykut Hamal N.:
Second-order boundary value problems with integral boundary conditions on the real line. Electronic J. Differential Equations, vol. 2014 (2014), no. 19, 1–13.
MR 3159428 |
Zbl 1292.34017
[19] Zeidler E.:
Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems. Springer, New York, 1986.
MR 0816732 |
Zbl 0583.47050
[20] Zhang Z., Zhang C.:
Similarity solutions of a boundary layer problem with a negative parameter arising in steady two-dimensional flow for power-law fluids. Nonlinear Anal. 102 (2014), 1–13.
MR 3182794 |
Zbl 1292.76005
[21] Zhu S., Wu Q., Cheng X.:
Numerical solution of the Falkner-Skan equation based on quasilinearization. Appl. Math. Comput. 215 (2009), 2472–2485.
MR 2563461