Previous |  Up |  Next

Article

Keywords:
functional boundary conditions; unbounded solutions; half-line; upper and lower solutions; Nagumo condition; Green's function; fixed point theory; Falkner-Skan equation
Summary:
This paper is concerned with the existence of bounded or unbounded solutions to third-order boundary value problem on the half-line with functional boundary conditions. The arguments are based on the Green functions, a Nagumo condition, Schauder fixed point theorem and lower and upper solutions method. An application to a Falkner-Skan equation with functional boundary conditions is given to illustrate our results.
References:
[1] Agarwal R.P., O'Regan D.: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publisher, Glasgow, 2001. MR 1845855 | Zbl 0988.34002
[2] Boucherif A.: Second order boundary value problems with integral boundary conditions. Nonlinear Anal. 70 (2009) no. 1, 364–371. DOI 10.1016/j.na.2007.12.007 | MR 2468243 | Zbl 1169.34310
[3] Cabada A., Fialho J., Minhós F.: Non ordered lower and upper solutions to fourth order functional BVP. Discrete Contin. Dyn. Syst. 2011, Suppl. Vol. I, 209–218. MR 2987401
[4] Cabada A., Minhós F.: Fully nonlinear fourth-order equations with functional boundary conditions. J. Math. Anal. Appl. 340 (2008), 239–251. DOI 10.1016/j.jmaa.2007.08.026 | MR 2376151 | Zbl 1138.34008
[5] Corduneanu C.: Integral Equations and Applications. Cambridge University Press, Cambridge, 1991. MR 1109491 | Zbl 1156.45001
[6] Feng H., Ji D., Ge W.: Existence and uniqueness of solutions for a fourth-order boundary value problem. Nonlinear Anal. 70 (2009), 3761–3566. DOI 10.1016/j.na.2008.07.013 | MR 2502764
[7] Fialho J., Minhós F.: Higher order functional boundary value problems without monotone assumptions. Bound. Value Probl. 2013, 2013:81. MR 3055842 | Zbl 1293.34027
[8] Fu D., Ding W.: Existence of positive solutions of third-order boundary value problems with integral boundary conditions in Banach spaces. Adv. Difference Equ. 2013, 2013:65. MR 3044690
[9] Graef J., Kong L., Minhós F., Fialho J.: On the lower and upper solution method for higher order functional boundary value problems. Appl. Anal. Discrete Math. 5 (2011), no. 1, 133–146. DOI 10.2298/AADM110221010G | MR 2809041 | Zbl 1289.34054
[10] Graef J., Kong L., Minhós F.: Higher order $\phi $-Laplacian BVP with generalized Sturm-Liouville boundary conditions. Differ. Equ. Dyn. Syst. 18 (2010), no. 4, 373–383. DOI 10.1007/s12591-010-0071-1 | MR 2775180
[11] Han J., Liu Y., Zhao J.: Integral boundary value problems for first order nonlinear impulsive functional integro-differential differential equations. Appl. Math. Comput. 218 (2012), 5002–5009. MR 2870024
[12] Jiang J., Liu L., Wu Y.: Second-order nonlinear singular Sturm Liouville problems with integral boundary conditions. Appl. Math. Comput. 215 (2009), 1573–1582. MR 2571646
[13] Kong L., Wong J.: Positive solutions for higher order multi-point boundary value problems with nonhomogeneous boundary conditions. J. Math. Anal. Appl. 367 (2010), 588–611. DOI 10.1016/j.jmaa.2010.01.063 | MR 2607284 | Zbl 1197.34035
[14] Lu H., Sun L., Sun J.: Existence of positive solutions to a non-positive elastic beam equation with both ends fixed. Bound. Value Probl. 2012, 2012:56. MR 2942969
[15] Minhós F., Fialho J.: On the solvability of some fourth-order equations with functional boundary conditions. Discrete Contin. Dyn. Syst., 2009, suppl., 564–573. MR 2648180 | Zbl 1192.34023
[16] Pei M., Chang S., Oh Y.S.: Solvability of right focal boundary value problems with superlinear growth conditions. Bound. Value Probl. 2012, 2012:60. MR 2965952
[17] Yoruk F., Aykut Hamal N.: Second-order boundary value problems with integral boundary conditions on the real line. Electronic J. Differential Equations, vol. 2014 (2014), no. 19, 1–13. MR 3159428 | Zbl 1292.34017
[18] Wang M.X., Cabada A., Nieto J.J.: Monotone method for nonlinear second order periodic boundary value problems with Carathéodory functions. Ann. Polon. Math. 58 (1993), 221–235. DOI 10.4064/ap-58-3-221-235 | MR 1244394 | Zbl 0789.34027
[19] Zeidler E.: Nonlinear Functional Analysis and Its Applications, I: Fixed-Point Theorems. Springer, New York, 1986. MR 0816732 | Zbl 0583.47050
[20] Zhang Z., Zhang C.: Similarity solutions of a boundary layer problem with a negative parameter arising in steady two-dimensional flow for power-law fluids. Nonlinear Anal. 102 (2014), 1–13. MR 3182794 | Zbl 1292.76005
[21] Zhu S., Wu Q., Cheng X.: Numerical solution of the Falkner-Skan equation based on quasilinearization. Appl. Math. Comput. 215 (2009), 2472–2485. MR 2563461
Partner of
EuDML logo