Previous |  Up |  Next

Article

Keywords:
oscillatory; nonrectifiable; second order linear differential equation
Summary:
The second order linear differential equation \begin{equation*} (p(x)y^{\prime })^{\prime }+q(x)y=0\,, \quad x \in (0,x_0] \end{equation*} is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition.
References:
[1] Coppel, W.A.: Disconjugacy. Lecture Notes in Math., vol. 220, Springer–Verlag, Berlin–New York, 1971. DOI 10.1007/BFb0058618 | MR 0460785 | Zbl 0224.34003
[2] Došlý, O., Řehák, P.: Half-linear differential equations. North-Holland Math. Stud., vol. 202, Elsevier Science B.V., Amsterdam, 2005. MR 2158903 | Zbl 1090.34001
[3] Elias, U.: Oscillation theory of two-term differential equations. Math. Appl., vol. 396, Kluwer Acad. Publ., Dordrecht, 1997. MR 1445292 | Zbl 0878.34022
[4] Hartman, P.: Ordinary differential equations. Classics Appl. Math, vol. 38, SIAM, Philadelphia, PA, 2002. MR 1929104 | Zbl 1009.34001
[5] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations. Math. Appl., vol. 89, Kluwer Acad. Publ., Dordrecht, 1993, Translated from the 1985 Russian original. MR 1220223 | Zbl 0782.34002
[6] Kusano, T., Yoshida, N.: Existence and qualitative behavior of oscillatory solutions of second order linear ordinary differential equations. Acta Math. Univ. Comenian. (N.S.) 86 (2017), 23–50. MR 3602515 | Zbl 1374.34098
[7] Kwong, M.K., Pašić, M., Wong, J.S.W.: Rectifiable oscillations in second-order linear differential equations. J. Differential Equations 245 (2008), 2333–2351. DOI 10.1016/j.jde.2008.05.016 | MR 2446834 | Zbl 1168.34027
[8] Pašić, M.: Minkowski-Bouligand dimension of solutions of the one-dimensional $p$-Laplacian. J. Differential Equations 190 (2003), 268–305. DOI 10.1016/S0022-0396(02)00149-3 | MR 1970964 | Zbl 1054.34034
[9] Pašić, M.: Rectifiability of solutions of the one-dimensional $p$-Laplacian. Electron. J. Differential Equations 46 (2005), 8pp. MR 2135257 | Zbl 1129.35402
[10] Pašić, M.: Rectifiable and unrectifiable oscillations for a class of second-order linear differential equations of Euler type. J. Math. Anal. Appl. 335 (2007), 724–738. DOI 10.1016/j.jmaa.2007.01.099 | MR 2340351 | Zbl 1126.34023
[11] Pašić, M.: Rectifiable and unrectifiable oscillations for a generalization of the Riemann-Weber version of Euler differential equation. Georgian Math. J. 15 (2008), 759–774. MR 2494972 | Zbl 1172.34025
[12] Pašić, M., Raguž, A.: Rectifiable oscillations and singular behaviour of solutions of second-order linear differential equations. Int. J. Math. Anal. 2 (2008), 477–490. MR 2482731 | Zbl 1181.34045
[13] Pašić, M., Tanaka, S.: Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order. J. Math. Anal. Appl. 381 (2011), 27–42. DOI 10.1016/j.jmaa.2011.03.051 | MR 2796190 | Zbl 1223.34047
[14] Swanson, C.A.: Comparison and oscillation theory of linear differential equations. Math. Sci. Engrg., vol. 48, Academic Press, New York-London, 1968. MR 0463570 | Zbl 0191.09904
[15] Wong, J.S.W.: On rectifiable oscillation of Euler type second order linear differential equations. Electron. J. Qual. Theory Differ. Equ. 20 (2007), 12pp. MR 2346353 | Zbl 1182.34049
Partner of
EuDML logo