Summary: Let $\Lambda =\left (\begin {smallmatrix} A&M\\ 0&B \end {smallmatrix}\right )$ be an Artin algebra. In view of the characterization of finitely generated Gorenstein injective $\Lambda $-modules under the condition that $M$ is a cocompatible $(A,B)$-bimodule, we establish a recollement of the stable category $\overline {\rm Ginj(\Lambda )}$. We also determine all strongly complete injective resolutions and all strongly Gorenstein injective modules over $\Lambda $.
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[8] Happel, D.: Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Mathematical Society Lecture Note Series 119, Cambridge University Press, Cambridge (1988). DOI 10.1017/CBO9780511629228 | MR 0935124 | Zbl 0635.16017