[1] Berman, A., Plemmons, R. J.:
Nonnegative Matrices in Mathematical Sciences. Academic Press, New York 1979.
MR 0544666
[2] Bouzerdoum, A., Pattison, T. R.:
Neural networks for quadratic optimization with bound constraints. IEEE Trans. Neural Networks 4 (1993), 293-303.
DOI 10.1109/72.207617
[3] Civalleri, P. P., Gilli, M., Pandolfi, L.:
On stability of cellular neural networks with delay. IEEE Trans. Circuits Syst. I 40 (1993), 157-165.
DOI 10.1109/81.222796 |
MR 1232558
[4] Cheng, C., Liao, T., Yan, J., Hwang, C.:
Globally asymptotic stability of a class of neutral-type neural networks with delays. IEEE Trans. Syst. Man Cybern. 36 (2006), 1191-1195.
DOI 10.1109/tsmcb.2006.874677
[5] Cheng, L., Hou, Z., Tan, M.:
A neutral-type delayed projection neural network for solving nonlinear variational inequalities. IEEE Trans. Circuits Syst. II-Express Brief 55 (2008), 806-810.
DOI 10.1109/tcsii.2008.922472
[6] Chua, L. O., Yang, L.:
Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35 (1988), 1273-1290.
DOI 10.1109/31.7601 |
MR 0960778
[7] Gui, Z., Ge, W., Yang, X.:
Periodic oscillation for a Hopfield neural networks with neutral delays. Phys. Lett. A 364 (2007), 267-273.
DOI 10.1016/j.physleta.2006.12.013
[8] Guan, Z., Chen, G., Qin, Y.:
On equilibria, stability and instability of Hopfield neural networks. IEEE Trans. Neural Networks 2 (2000), 534-540.
DOI 10.1109/72.839023
[11] He, W., Chen, G., Han, Q.-L., Qian, F.:
Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control. Inform. Sci. 20 (2017), 145-158.
DOI 10.1016/j.ins.2015.06.005
[12] He, W., Qian, F., Cao, J.:
Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control. Neural Networks 85 (2017), 1-9.
DOI 10.1016/j.neunet.2016.09.002
[13] He, W., Qian, F., Lam, J., Chen, G., Han, Q.-L., Kurths, J.:
Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control: Error estimation, optimization and design. Automatica 62 (2015), 249-262.
DOI 10.1016/j.automatica.2015.09.028 |
MR 3423996
[14] Ji, D. H., Koo, J. H., Won, S. C., Lee, S. M., Park, J. H.:
Passivity-based control for Hopfield neural networks using convex representation. Appl. Math. Comput. 217 (2011), 6168-6175.
DOI 10.1016/j.amc.2010.12.100 |
MR 2773359
[15] Kaul, S. K., Liu, X. Z.:
Vector Lyapunov functions for impulsive differential systems with variable times. Dyn. Continuous Discrete Impulsive Systems 6 (1999), 25-38.
MR 1679754
[16] Kennedy, M. P., Chua, L. O.:
Neural networks for non-linear programming. IEEE Trans. Circuits. Syst. 35 (1988), 554-562.
DOI 10.1109/31.1783 |
MR 0936291
[18] Lakshmikantham, V., Leela, S., Kaul, S. K.:
Comparison principle for impulsive differential equations with variable times and stability theory. Nonlinear Anal. 22 (1994), 499-503.
DOI 10.1016/0362-546x(94)90170-8 |
MR 1266374
[19] Lakshmikantham, V., Papageorgiou, N. S., Vasundhara, J.:
The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments. Appl. Anal. 15 (1993), 41-58.
DOI 10.1080/00036819308840203 |
MR 1278992
[20] Lakshmanan, S., Park, J. H., Jung, H. Y., Balasubramaniam, P.:
Design of state estimator for neural networks with leakage, discrete and distributed delays. Appl. Math. Comput. 218 (2012), 11297-11310.
DOI 10.1016/j.amc.2012.05.022 |
MR 2942411
[21] Li, T., Zheng, W., Lin, C.:
Delay-slope dependent stability results of recurrent neural networks. IEEE Trans. Neural Networks 22 (2011), 2138-2143.
DOI 10.1109/tnn.2011.2169425
[22] Lien, C., Yu, K., Lin, Y., Chung, Y., Chung, L.:
Exponential convergence rate estimation for uncertain delayed neural networks of neutral type. Chao. Solit. Fract. 40 (2009), 2491-2499.
DOI 10.1016/j.chaos.2007.10.043 |
MR 2533195
[23] Liu, X., Ballinger, G.:
Existence and continuability of solutions for differential equations with delays and state-dependent impulses. Nonlinear Anal. 51 (2002), 633-647.
DOI 10.1016/s0362-546x(01)00847-1 |
MR 1920341
[24] Liu, Y., Wang, Z., Liu, X.:
Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Networks 19 (2006), 667-675.
DOI 10.1016/j.neunet.2005.03.015
[27] Niu, Y., Lam, J., Wang, X.:
Sliding-mode control for uncertain neutral delay systems. IEE Proc. Part D: Control Theory Appl. 151 (2004), 38-44.
DOI 10.1049/ip-cta:20040009
[28] Park, J. H.:
Further result on asymptotic stability criterion of cellular neural networks with time-varying discrete and distributed delays. Appl. Math. Comput. 182 (2006), 1661-1666.
DOI 10.1016/j.amc.2006.06.005 |
MR 2282606
[29] Park, J. H., Kwon, O., Lee, S.:
LMI optimization approach on stability for delayed neural networks of neutral-type. Appl. Math. Comput. 196 (2008), 236-244.
DOI 10.1016/j.amc.2007.05.047 |
MR 2382607
[30] Qin, J., Cao, J.: Delay-dependent robust stability of neutral-type neural networks with time delays. J. Math. Cont. Sci. Appl. 1 (2007), 179-188.
[31] Rakkiyappan, R., Balasubramaniama, P., Cao, J.:
Global exponential stability results for neutral-type impulsive neural networks. Nonlinear Anal. RWA 11 (2010), 122-130.
DOI 10.1016/j.nonrwa.2008.10.050 |
MR 2570531
[32] Roska, T., Chua, L. O.:
Cellular neural networks with nonlinear and delay-type templates. Int. J. Circuit Theory Appl. 20 (1992), 469-481.
DOI 10.1002/cta.4490200504
[33] Samoilenko, A. M., Perestyuk, N. A.:
Impulsive Differential Equations. World Scientific, Singapore 1995.
DOI 10.1142/9789812798664
[36] Wang, Z., Wang, Y., Liu, Y.:
Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays. IEEE Trans. Neural Networks 21 (2010), 11-25.
DOI 10.1109/tnn.2009.2033599
[37] Wang, J., Zhang, X.-M., Han, Q.-L.:
Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans. Neural Networks and Learning Systems 27 (2016), 77-88.
DOI 10.1109/tnnls.2015.2411734 |
MR 3465626
[39] Xu, S., Lam, J., Ho, D., Zou, Y.:
Delay-dependent exponential stability for class of neural networks with time delays. J. Comput. Appl. Math. 183 (2005), 16-28.
DOI 10.1016/j.cam.2004.12.025 |
MR 2156097
[43] Zhang, X.-M., Han, Q.-L.:
New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks. IEEE Trans. Neural Networks 20 (2009), 533-539.
DOI 10.1109/tnn.2009.2014160
[44] Zhang, X.-M., Han, Q.-L.:
Global asymptotic stability for a class of generalized neural networks with interval time-varying delays. IEEE Trans. Neural Networks 22 (2011), 1180-1192.
DOI 10.1109/tnn.2011.2147331 |
MR 3465626
[45] Zhang, X.-M., Han, Q.-L.:
Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach. Neural Networks 54 (2014), 57-69.
DOI 10.1016/j.neunet.2014.02.012
[46] Zhang, X.-M., Han, Q.-L.:
Event-triggered H$_\infty$ control for a class of nonlinear networked control systems using novel integral inequalities. Int. J. Robust Nonlinear Control 27 (2016), 4, 679-700.
DOI 10.1002/rnc.3598 |
MR 3604527
[48] Zhang, Y., Xu, S., Chu, Y., Lu, J.:
Robust global synchronization of complex networks with neutral-type delayed nodes. Appl. Math. Comput. 216 (2010), 768-778.
DOI 10.1016/j.amc.2010.01.075 |
MR 2606984