Previous |  Up |  Next

Article

Keywords:
multivariate quantile; regression quantile; halfspace depth; regression depth; depth contour
Summary:
Recently, the eminently popular standard quantile regression has been generalized to the multiple-output regression setup by means of directional regression quantiles in two rather interrelated ways. Unfortunately, they lead to complicated optimization problems involving parametric programming, and this may be the main obstacle standing in the way of their wide dissemination. The presented R package modQR is intended to address this issue. It originates as a quite faithful translation of the authors' moQuantile toolbox for Octave and MATLAB, and provides all the necessary computational support for both the directional multiple-output quantile regression methods to the wide statistical public. The article offers a concise summary of the statistical theory behind modQR, overviews the package in brief, points out its departures from moQuantile, comments on its use and performance, and demonstrates its application.
References:
[1] Boček, P., Šiman, M.: modQR: Multiple-Output Directional Quantile Regression. R package version 0.1.0, 2015.
[2] Boček, P., Šiman, M.: Directional quantile regression in Octave and MATLAB. Kybernetika 52 (2016), 28-51. DOI 10.14736/kyb-2016-1-0028 | MR 3482609
[3] Chakraborty, B.: On multivariate quantile regression. J. Statist. Planning Inference 110 (2003), 109-132. DOI 10.1016/s0378-3758(01)00277-4 | MR 1944636
[4] Charlier, I., Paindaveine, D., Saracco, J.: Multiple-output regression through optimal quantization. ECARES Working Paper 2016-18.
[5] Chaudhury, P.: On a geometric notion of quantiles for multivariate data. J. Amer. Stat. Assoc. 91 (1996), 862-872. DOI 10.2307/2291681 | MR 1395753
[6] Cheng, Y., Gooijer, J. G. De: On the $u$th geometric conditional quantile. J. Statist. Planning Inference 137 (2007), 1914-1930. DOI 10.1016/j.jspi.2006.02.014 | MR 2323873 | Zbl 1118.62051
[7] Došlá, Š.: Conditions for bimodality and multimodality of a mixture of two unimodal densities. Kybernetika 45 (2009) 279-292. MR 2518152 | Zbl 1165.62304
[8] Hallin, M., Lu, Z., Paindaveine, D., Šiman, M.: Local bilinear multiple-output quantile/depth regression. Bernoulli 21 (2015), 1435-1466. DOI 10.3150/14-bej610 | MR 3352050
[9] Hallin, M., Paindaveine, D., Šiman, M.: Multivariate quantiles and multiple-output regression quantiles: From ${L}_1$ optimization to halfspace depth. Ann. Statist. 38 (2010), 635-669. DOI 10.1214/09-aos723 | MR 2604670
[10] Hallin, M., Paindaveine, D., Šiman, M.: Rejoinder. Ann. Statist. 38 (2010), 694-703. DOI 10.1214/09-aos723rej | MR 2604674
[11] Koenker, R.: Quantile Regression. Cambridge University Press, New York 2005. DOI 10.1017/cbo9780511754098 | MR 2268657 | Zbl 1236.62031
[12] Koenker, R., Bassett, G. J.: Regression quantiles. Econometrica 46 (1978), 33-50. DOI 10.2307/1913643 | MR 0474644 | Zbl 0482.62023
[13] Koltchinskii, V.: ${M}$-estimation, convexity and quantiles. Ann. Statist. 25 (1997), 435-477. DOI 10.1214/aos/1031833659 | MR 1439309
[14] Kong, L., Mizera, I.: Quantile tomography: Using quantiles with multivariate data. Statistica Sinica 22 (2012), 1589-1610. DOI 10.5705/ss.2010.224 | MR 3027100
[15] McKeague, I. W., López-Pintado, S., Hallin, M., Šiman, M.: Analyzing growth trajectories. J. Developmental Origins of Health and Disease 2 (2011), 322-329. DOI 10.1017/s2040174411000572
[16] Paindaveine, D., Šiman, M.: On directional multiple-output quantile regression. J. Multivariate Anal. 102 (2011), 193-212. DOI 10.1016/j.jmva.2010.08.004 | MR 2739109 | Zbl 1328.62311
[17] Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions. Comput. Statist. Data Anal. 56 (2012), 840-853. DOI 10.1016/j.csda.2010.11.014 | MR 2888729 | Zbl 1304.65060
[18] Paindaveine, D., Šiman, M.: Computing multiple-output regression quantile regions from projection quantiles. Comput. Statist. 27 (2012), 29-49. DOI 10.1007/s00180-011-0231-y | MR 2877809 | Zbl 1304.65060
[19] Šiman, M.: On exact computation of some statistics based on projection pursuit in a general regression context. Commun. Statist. - Simulation and Computation 40 (2011), 948-956. DOI 10.1080/03610918.2011.560730 | MR 2792475 | Zbl 1219.62109
[20] Šiman, M.: Precision index in the multivariate context. Commun. Statist. - Theory and Methods 43 (2014), 377-387. DOI 10.1080/03610926.2012.661509 | MR 3171043
Partner of
EuDML logo