Previous |  Up |  Next

Article

MSC: 92D25
Summary:
Článek se zabývá některými aplikacemi matematiky v ekologii. V historickém kontextu ukazuje, že jednak teoretické základy populační a evoluční ekologie využívají matematické metodologie založené na diferenciálních či diferenčních rovnicích, jednak ekologické problémy motivují vznik nových matematických disciplín, jako je např. evoluční teorie her.
References:
[1] Babkov, V. V.: Matematičeskije modeli i laboratornye rezultaty: epizod 1930ich godov. In: Issledovanija po istorii fiziki i mechaniki, Idlis, G. M. (Ed.),Rossijskaja akademija nauk, Institut istorii jestestvoznanija i techniki imeni Vavilova, Nauka, 2003, 140–144. MR 2321839
[2] Bacaër, N.: A short history of mathematical population dynamics. Springer, London, 2011. MR 2744666 | Zbl 1321.92028
[3] Baliga, S., Sjöström, T.: Arms races and negotiations. Rev. Econ. Stud. 71 (2004), 351–369. DOI 10.1111/0034-6527.00287 | MR 2045085 | Zbl 1096.91001
[4] Bergerud, A. T.: Prey switching in a simple ecosystem. Scientific American 249 (1983), 130–141. DOI 10.1038/scientificamerican1283-130
[5] Boukal, D,, Křivan, V.: Lyapunov functions for Lotka-Volterra predator-prey models with optimal foraging behavior. J. Math. Biol. 39 (1999), 493–517. DOI 10.1007/s002850050009 | MR 1731773 | Zbl 0976.92021
[6] Britton, N. F.: Reaction-diffusion equations and their applications to biology. Academic Press, London, 1986. MR 0866143 | Zbl 0602.92001
[7] Britton, N. F.: Essential mathematical biology. Springer, London, 2003. MR 1968417 | Zbl 1037.92001
[8] Broom, M., Rychtar, J.: Game-theoretical models in biology. CRC Press, Boca Raton, FL, 2013. MR 3052136 | Zbl 1264.92002
[9] Brown, J. S.: Why Darwin would have loved evolutionary game theory. Proc. Roy. Soc. B: Biol. Sci. 283 (2016), paper No. 20160847. DOI 10.1098/rspb.2016.0847
[10] Cantrell, R. S., Cosner, C: Spatial ecology via reaction-diffusion equations. Wiley, Chichester, 2003. MR 2191264 | Zbl 1059.92051
[11] Cushing, J. M., Costantino, R. F., Dennis, B., Desharnais, R., Henson, S. M.: Chaos in ecology: experimental nonlinear dynamics. Elsevier, 2002.
[12] Edelstein-Keshet, L.: Mathematical models in biology. Random House, New York, 1988. MR 1010228 | Zbl 0674.92001
[13] Filippov, A. F.: Differential equations with discontinuous right-hand sides. Kluwer Academic Publishers, Dordrecht, 1988. MR 1028776 | Zbl 0664.34001
[14] Gall, J. M.: Georgij Francevič Gauze. Nestor-Istoria, 2012.
[15] Gause, G. F.: The struggle for existence. Williams and Wilkins, Baltimore, 1934.
[16] Gause, G. F.: Ekologija i nekotorije problemy proischoždenija vidov. In: Ekologija i evoljucionnaja teorija, Gall, J. M. (Ed.), Nauka, 1984, 5–105.
[17] Gause, G. F., Smaragdova, N. P., Witt, A. A.: Further studies of interaction between predators and prey. J. Animal Ecology 5 (1936), 1–18. DOI 10.2307/1087
[18] Gurney, W. S. C., Nisbet, R. M.: Ecological dynamics. Oxford University Press, New York, 1998.
[19] Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge, 1998. MR 1635735 | Zbl 0914.90287
[20] Holling, C. S.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Canada 48 (1966), 5–88. DOI 10.4039/entm9848fv
[21] Holt, R. D.: Predation, apparent competition, and the structure of prey communities. Theoret. Population Biol. 12 (1977), 197–229. DOI 10.1016/0040-5809(77)90042-9 | MR 0465281
[22] Křivan, V.: Co to je teorie životaschopnosti. Pokroky Mat. Fyz. Astronom. 35 (1990), 113–120. MR 1070074
[23] Křivan, V.: Dynamic ideal free distribution: Effects of optimal patch choice on predator-prey dynamics. Amer. Naturalist 149 (1997), 164–178. DOI 10.1086/285984
[24] Křivan, V.: On the Gause predator-prey model with a refuge: A fresh look at the history. J. Theoret. Biol. 274 (2011), 67–73. DOI 10.1016/j.jtbi.2011.01.016 | MR 2974938 | Zbl 1331.92128
[25] Lotka, A. J.: Elements of physical biology. Williams and Wilkins, Baltimore, 1926.
[26] May, R. M.: Simple mathematical models with very complicated dynamics. Nature 261 (1976), 459–467. DOI 10.1038/261459a0 | Zbl 1369.37088
[27] Maynard Smith, J.: Models in ecology. Cambridge University Press, Cambridge, 1974. Zbl 0312.92001
[28] Maynard Smith, J.: Evolution and the theory of games. Cambridge University Press, Cambridge, 1982. Zbl 0526.90102
[29] Maynard Smith, J., Price, G. R.: The logic of animal conflict. Nature 246 (1973), 15–18. DOI 10.1038/246015a0 | Zbl 1369.92134
[30] Nash, J.: Non-cooperative games. Ann. of Math. 54 (1951), 286–295. DOI 10.2307/1969529 | MR 0043432 | Zbl 0045.08202
[31] von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Ann. 100 (1928), 295–320. DOI 10.1007/BF01448847 | MR 1512486
[32] von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton University Press, 1944. MR 0011937 | Zbl 0063.05930
[33] Parvinen, K.: Evolutionary suicide. Acta Biotheoretica 53 (2005), 241–264. DOI 10.1007/s10441-005-2531-5
[34] Sandholm, W. H.: Population games and evolutionary dynamics. MIT Press, Cambridge, MA, 2010. MR 2560519 | Zbl 1208.91003
[35] Stephens, D. W., Krebs, J. R.: Foraging theory. Princeton University Press, Princeton, NJ, 1986.
[36] Taylor, P. D., Jonker, L. B.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40 (1978), 145–156. MR 0489983
[37] Thieme, H. R.: Mathematics in population biology. Princeton University Press, Princeton, NJ, 2003. MR 1993355 | Zbl 1054.92042
[38] Vincent, T. L., Brown, J. S.: Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge University Press, Cambridge, 2005. Zbl 1140.91015
[39] Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118 (1926), 558–560. DOI 10.1038/118558a0
[40] Wynne-Edwards, V. C.: Intergroup selection in the evolution of social systems. Nature 200 (1963), 623–626. DOI 10.1038/200623a0
Partner of
EuDML logo