Previous |  Up |  Next

Article

Keywords:
continuum; property of Kelley; semi-Kelley; cartesian products; hyperspaces; Whitney levels
Summary:
In this paper we construct a Kelley continuum $X$ such that $X\times [0,1]$ is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69--99. In addition, we show that the hyperspace $C(X)$ is not semi- Kelley. Further we show that small Whitney levels in $C(X)$ are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.
References:
[1] Calderón-Camacho I.D., Castañeda-Alvarado E., Islas-Moreno C., Maya-Escudero D., Ruiz-Montañez F.J.: Being semi-Kelley does not imply semi-smoothness. Questions Answers Gen. Topology 32 (2014), 73–77. MR 3222532 | Zbl 1302.54066
[2] Charatonik J.J.: Semi-Kelley continua and smoothness. Questions Answers Gen. Topology 21 (2003), 103–108. MR 1998212 | Zbl 1041.54031
[3] Charatonik J.J., Charatonik W.J.: A weaker form of the property of Kelley. Topology Proc. 23 (1998), 69–99. MR 1743801 | Zbl 0943.54022
[4] Charatonik J.J., Charatonik W.J.: Property of Kelley for the cartesian product and hyperspaces. Proc. Amer. Math. Soc. 136 (2008), 341–346. DOI 10.1090/S0002-9939-07-08650-9 | MR 2350421
[5] Charatonik W.J.: On the property of Kelley in hyperspaces. Topology Proc. International Conference, Leningrand 1982, Lectures Notes in Math., 1060, Springer, Berlin, 1984, pp. 7–10. MR 0770219 | Zbl 0548.54004
[6] Eberhat C., Nadler S.B., Jr.: The dimension of certain hyperspaces. Bull. Pol. Acad. Sci., 19 (1971), 1027–1034. MR 0303513
[7] Kato H.: A note on continuus mappings and the property of J.L. Kelley. Proc. Amer. Math. Soc. 112 (1991), 1143–1148. DOI 10.1090/S0002-9939-1991-1073527-4 | MR 1073527
[8] Kelley J.L.: Hyperspaces of a continuum. Trans. Amer. Math. Soc. 52 (1942), 22–36. DOI 10.1090/S0002-9947-1942-0006505-8 | MR 0006505 | Zbl 0061.40107
Partner of
EuDML logo