Previous |  Up |  Next

Article

Keywords:
fixed point; compatible mappings; non-Archimedean Menger probabilistic normed spaces
Summary:
The aim of this paper is to introduce the concepts of compatible mappings and compatible mappings of type $(R)$ in non-Archimedean Menger probabilistic normed spaces and to study the existence problems of common fixed points for compatible mappings of type $(R)$, also, we give an applications by using the main theorems.
References:
[1] Chang, S.S.: Fixed point theorem in problabilistic metric spaces with applications. Scientia Sinica (Series A) 26 (1983), 1144–1155. MR 0747108
[2] Chang, S.S.: On the theory of problabilistic metric spaces with applications. Acta Math. Sinica (N.S.) 1 (4) (1985), 366–377. DOI 10.1007/BF02564846 | MR 0867910
[3] Chang, S.S., Xiang, S.W.: Topological structure and metrization problem of probabilistic metric spaces and application. J. Qufu Norm. Univ. Nat. Sci. Ed. 16 (3) (1990), 1–8. MR 1078778
[4] Cho, Y.J., Park, K.S., Chang, S.S.: Fixed point theorems in metric spaces and probabilistic metric spaces. Internat. J. Math. Math. Sci. 19 (2) (1996), 243–252. DOI 10.1155/S0161171296000348 | MR 1375985 | Zbl 0843.47033
[5] Drossos, C.A.: Stochastic Menger spaces and convergence in probability. Rev. Roumaine Math. Pures Appl. 22 (1977), 1069–1076. MR 0467865 | Zbl 0372.60014
[6] Fan, J.X.: On the generalizations of Ekeland’s vartional principle and Caristi’s fixed point theorem. The 6th National Conference on Fixed point Theory Variational Inequalities and Probabilistic Metric Spaces Theory, Qingdao, China, 1993.
[7] He, P.J.: The variational principle in fuzzy metric spaces and its applications. Fuzzy Sets and Systems 45 (1992), 389–394. DOI 10.1016/0165-0114(92)90157-Y | MR 1154203 | Zbl 0754.54005
[8] Hegedus, M., Szilagyi, T.: Equivalence conditions and a new fixed point theorem in the theory of contraction mappings. Math. Japon. 25 (1) (1980), 147–157. MR 0571276
[9] Jungck, G.: Compatible maps and common fixed points. Internat. J. Math. Math. Sci. 9 (1986), 771–779. DOI 10.1155/S0161171286000935 | MR 0870534
[10] Koireng, M.M., Ningombam, L., Rohen, Y.: Common fixed points of compatible mappings of type $(R)$. Gen. Math. Notes 10 (1) (2012), 58–62.
[11] Menger, K.: Statistical metrics. Proc. Nat. Acad. Sci. USA 28 (1942), 535–537. DOI 10.1073/pnas.28.12.535 | MR 0007576 | Zbl 0063.03886
[12] Rohen, Y., Singh, M.R., Shambhu, L.: Common fixed points of compatible mapping of type $(C)$ in Banach spaces. Proc. Math. Soc. 20 (2004), 77–87.
[13] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313–334. DOI 10.2140/pjm.1960.10.313 | MR 0115153 | Zbl 0096.33203
[14] Schweizer, B., Sklar, A.: Probabilistic metric spaces. North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983. MR 0790314 | Zbl 0546.60010
[15] Singh, B., Chauhan, M.S.: On common fixed points of four mappings. Bull. Calcutta Math. Soc. 88 (1996), 451–456. MR 1630261 | Zbl 0904.54031
[16] Singh, S.P., Meade, B.A.: On common fixed point theorems. Bull. Austral. Math. Soc. 16 (1977), 49–53. DOI 10.1017/S000497270002298X | MR 0438318 | Zbl 0351.54040
[17] Tan, N.X.: Generalized probabilistic metric spaces and fixed point theorems. Math. Nachr. 129 (1986), 205–218. DOI 10.1002/mana.19861290119 | MR 0864635 | Zbl 0603.54049
Partner of
EuDML logo