Title:
|
On the derived length of units in group algebra (English) |
Author:
|
Chaudhuri, Dishari |
Author:
|
Saikia, Anupam |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
855-865 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a finite group $G$, $K$ a field of characteristic $p\geq 17$ and let $U$ be the group of units in $KG$. We show that if the derived length of $U$ does not exceed $4$, then $G$ must be abelian. (English) |
Keyword:
|
group algebra |
Keyword:
|
group of units |
Keyword:
|
derived subgroup |
MSC:
|
16S34 |
MSC:
|
16U60 |
idZBL:
|
Zbl 06770136 |
idMR:
|
MR3697922 |
DOI:
|
10.21136/CMJ.2017.0205-16 |
. |
Date available:
|
2017-09-01T12:28:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146865 |
. |
Reference:
|
[1] Bagiński, C.: A note on the derived length of the unit group of a modular group algebra.Commun. Algebra 30 (2002), 4905-4913. Zbl 1017.16022, MR 1940471, 10.1081/AGB-120014675 |
Reference:
|
[2] Balogh, Z., Li, Y.: On the derived length of the group of units of a group algebra.J. Algebra Appl. 6 (2007), 991-999. Zbl 1168.16016, MR 2376796, 10.1142/S0219498807002624 |
Reference:
|
[3] Bateman, J. M.: On the solvability of unit groups of group algebras.Trans. Amer. Math. Soc. 157 (1971), 73-86. Zbl 0218.20006, MR 0276371, 10.2307/1995832 |
Reference:
|
[4] Bovdi, A.: The group of units of a group algebra of characteristic $p$.Publ. Math. 52 (1998), 193-244. Zbl 0906.16016, MR 1603359 |
Reference:
|
[5] Bovdi, A.: Group algebras with a solvable group of units.Commun. Algebra 33 (2005), 3725-3738. Zbl 1082.16036, MR 2175462, 10.1080/00927870500243213 |
Reference:
|
[6] Bovdi, A. A., Khripta, I.: Finite dimensional group algebras having solvable unit groups.Trans. Science Conf. Uzhgorod State University (1974), 227-233. |
Reference:
|
[7] Bovdi, A. A., Khripta, I. I.: Group algebras of periodic groups of a solvable multiplicative group.Math. Notes 22 (1977), 725-731 English. Russian original translation from Mat. Zametki 22 1977 421-432. Zbl 0363.16004, MR 0485969, 10.1007/BF02412503 |
Reference:
|
[8] Catino, F., Spinelli, E.: On the derived length of the unit group of a group algebra.J. Group Theory 13 (2010), 577-588. Zbl 1205.16030, MR 2661658, 10.1515/JGT.2010.008 |
Reference:
|
[9] Chandra, H., Sahai, M.: Group algebras with unit groups of derived length three.J. Algebra Appl. 9 (2010), 305-314. Zbl 1209.16028, MR 2646666, 10.1142/S0219498810003938 |
Reference:
|
[10] Chandra, H., Sahai, M.: On group algebras with unit groups of derived length three in characteristic three.Publ. Math. 82 (2013), 697-708. Zbl 1274.16046, MR 3066439, 10.5486/PMD.2013.5461 |
Reference:
|
[11] Chaudhuri, D., Saikia, A.: On group algebras with unit groups of derived length at most four.Publ. Math. 86 (2015), 39-48. Zbl 1347.16021, MR 3300576, 10.5486/PMD.2015.6012 |
Reference:
|
[12] Gorenstein, D.: Finite Groups.Chelsea Publishing Company, New York (1980). Zbl 0463.20012, MR 0569209 |
Reference:
|
[13] Kurdics, J.: On group algebras with metabelian unit groups.Period. Math. Hung. 32 (1996), 57-64. Zbl 0857.20001, MR 1407909, 10.1007/BF01879732 |
Reference:
|
[14] Lee, G. T., Sehgal, S. K., Spinelli, E.: Group rings with solvable unit groups of minimal derived length.Algebr. Represent. Theory 17 (2014), 1597-1601. Zbl 1309.16025, MR 3260911, 10.1007/s10468-013-9461-8 |
Reference:
|
[15] Motose, K., Ninomiya, Y.: On the solvability of unit groups of group rings.Math. J. Okayama Univ. 15 (1972), 209-214. Zbl 0255.20006, MR 0322033 |
Reference:
|
[16] Motose, K., Tominaga, H.: Group rings with solvable unit groups.Math. J. Okayama Univ. 15 (1971), 37-40. Zbl 0253.16012, MR 0306297 |
Reference:
|
[17] Passman, D. S.: Observations on group rings.Commun. Algebra 5 (1977), 1119-1162. Zbl 0366.16003, MR 0457540, 10.1080/00927877708822213 |
Reference:
|
[18] Sahai, M.: Group algebras with centrally metabelian unit groups.Publ. Mat., Barc. 40 (1996), 443-456. Zbl 0869.16024, MR 1425630, 10.5565/PUBLMAT_40296_14 |
Reference:
|
[19] Sahai, M.: On group algebras $KG$ with $U(KG)'$ nilpotent of class at most 2.Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications Int. Conf., Chennai 2006, Contemporary Mathematics 456, American Mathematical Society, Providence S. K. Jain (2008), 165-173. Zbl 1158.16017, MR 2416149, 10.1090/conm/456/08889 |
Reference:
|
[20] Shalev, A.: Meta-abelian unit groups of group algebras are usually abelian.J. Pure Appl. Algebra 72 (1991), 295-302. Zbl 0735.16020, MR 1120695, 10.1016/0022-4049(91)90067-C |
Reference:
|
[21] Yoo, W. S.: The structure of the radical of the non semisimple group rings.Korean J. Math. 18 (2010), 97-103. |
. |