Previous |  Up |  Next

Article

Keywords:
monomial ideal; facet ideal; depth; Stanley depth
Summary:
Let $\Delta _{n,d}$ (resp.\ $\Delta _{n,d}'$) be the simplicial complex and the facet ideal $I_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-d+1}\cdots x_{n})$ (resp.\ $J_{n,d}=(x_{1}\cdots x_{d},x_{d-k+1}\cdots x_{2d-k},\ldots ,x_{n-2d+2k+1}\cdots x_{n-d+2k},x_{n-d+k+1}\cdots x_{n}x_{1}\cdots x_{k})$). When $d\geq 2k+1$, we give the exact formulas to compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}^t$ for all $t\geq 1$. When $d=2k$, we compute the depth and Stanley depth of quotient rings $S/J_{n,d}$ and $S/I_{n,d}$, and give lower bounds for the depth and Stanley depth of quotient rings $S/I_{n,d}^t$ for all $t\geq 1$.
References:
[1] Anwar, I., Popescu, D.: Stanley conjecture in small embedding dimension. J. Algebra 318 (2007), 1027-1031. DOI 10.1016/j.jalgebra.2007.06.005 | MR 2371984 | Zbl 1132.13009
[2] Bouchat, R. R.: Free resolutions of some edge ideals of simple graphs. J. Commut. Algebra 2 (2010), 1-35. DOI 10.1216/JCA-2010-2-1-1 | MR 2607099 | Zbl 1238.13028
[3] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0909.13005
[4] Cimpoeaş, M.: Stanley depth of monomial ideals with small number of generators. Cent. Eur. J. Math. 7 (2009), 629-634. DOI 10.2478/s11533-009-0037-0 | MR 2563437 | Zbl 1185.13027
[5] Cimpoeaş, M.: On the Stanley depth of edge ideals of line and cyclic graphs. Rom. J. Math. Comput. Sci. 5 (2015), 70-75. MR 3371758 | Zbl 06664242
[6] Duval, A. M., Goeckner, B., Klivans, C. J., Martin, J. L.: A non-partitionable Cohen-Macaulay simplicial complex. Adv. Math. 299 (2016), 381-395. DOI 10.1016/j.aim.2016.05.011 | MR 3519473 | Zbl 1341.05256
[7] Faridi, S.: The facet ideal of a simplicial complex. Manuscr. Math. 109 (2002), 159-174. DOI 10.1007/s00229-002-0293-9 | MR 1935027 | Zbl 1005.13006
[8] Herzog, J., Vladoiu, M., Zheng, X.: How to compute the Stanley depth of a monomial ideal. J. Algebra 322 (2009), 3151-3169. DOI 10.1016/j.jalgebra.2008.01.006 | MR 2567414 | Zbl 1186.13019
[9] Morey, S.: Depths of powers of the edge ideal of a tree. Commun. Algebra 38 (2010), 4042-4055. DOI 10.1080/00927870903286900 | MR 2764849 | Zbl 1210.13020
[10] Okazaki, R.: A lower bound of Stanley depth of monomial ideals. J. Commut. Algebra 3 (2011), 83-88. DOI 10.1216/JCA-2011-3-1-83 | MR 2782700 | Zbl 1242.13025
[11] Popescu, D.: Stanley depth of multigraded modules. J. Algebra 321 (2009), 2782-2797. DOI 10.1016/j.jalgebra.2009.03.009 | MR 2512626 | Zbl 1179.13016
[12] Rauf, A.: Depth and Stanley depth of multigraded modules. Commun. Algebra 38 (2010), 773-784. DOI 10.1080/00927870902829056 | MR 2598911 | Zbl 1193.13025
[13] Stanley, R. P.: Linear Diophantine equations and local cohomology. Invent. Math. 68 (1982), 175-193. DOI 10.1007/BF01394054 | MR 0666158 | Zbl 0516.10009
[14] Ştefan, A.: Stanley depth of powers of the path ideal. Available at arXiv:1409.6072v1 [math.AC] (2014), 6 pages.
[15] Villarreal, R. H.: Monomial Algebras. Pure and Applied Mathematics 238, Marcel Dekker, New York (2001). MR 1800904 | Zbl 1002.13010
Partner of
EuDML logo