[1] Andreianov, B., Bendahmane, M., Ouaro, S.:
Structural stability for variable exponent elliptic problems, I: The $p(x)$-Laplacian kind problems. Nonlinear Anal., 73, 2010, 2-24,
DOI 10.1016/j.na.2010.02.039 |
MR 2645827 |
Zbl 1191.35126
[2] Ansini, L., Giacomelli, L.:
Shear-thinning liquid films: macroscopic and asymptotic behavior by quasi-self-similar solutions. Nonlinearity, 15, 2002, 2147-2164,
DOI 10.1088/0951-7715/15/6/318 |
MR 1938485
[4] Antontsev, S.N., Shmarev, S.I.:
A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60, 2005, 515-545,
DOI 10.1016/j.na.2004.09.026 |
MR 2103951 |
Zbl 1066.35045
[5] Antontsev, S., Shmarev, S.:
Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions. Handbook of Differential Equations: Stationary Partial Differential Equations, 3, 2006, 1-100,
Zbl 1192.35047
[9] Bertsch, M., Giacomelli, L., Lorenzo, G., Karali, G.:
Thin-film equations with Partial wetting energy: Existence of weak solutions. Physica D, 209, 2005, 17-27,
DOI 10.1016/j.physd.2005.06.012 |
MR 2167440 |
Zbl 1079.76011
[10] Bhuvaneswari, V., Shangerganesh, L., Balachandran, K.:
Weak solutions for $p$-Laplacian equation. Adv. Nonlinear Anal., 1, 2012, 319-334,
MR 3037124 |
Zbl 1277.35117
[12] Cahn, J. W., Hilliard, J. E.:
Free energy of nonuniform system I. interfacial free energy. J. Chem. Phys., 28, 1958, 258-367,
DOI 10.1063/1.1744102
[13] Calderon, C. P., Kwembe, T. A.:
Dispersal models. Rev. Union Mat. Argentina, 37, 1991, 212-229,
MR 1266684 |
Zbl 0795.92029
[14] Chang, K.:
Critical Point Theory and Its Applications. 1986, Shangai Sci. Tech. Press, Shangai,
MR 0865982 |
Zbl 0698.58002
[15] Chen, Y., Levine, S., Rao, M.:
Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math., 66, 2006, 1383-1406,
DOI 10.1137/050624522 |
MR 2246061 |
Zbl 1102.49010
[16] Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.:
Lebesgue and Sobolev Spaces With Variable Exponents. 2011, Springer-Verlag, Heidelberg,
MR 2790542 |
Zbl 1222.46002
[17] Evans, L. C.:
Weak Convergence Methods for Nonlinear Partial Differential Equations. 1990, American Mathematical Society, Providence, RI,
MR 1034481 |
Zbl 0698.35004
[18] Gao, W., Guo, Z.:
Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl., 191, 2012, 551-562,
MR 2958349 |
Zbl 1272.35135
[19] Guo, Z., Liu, Q., Sun, J., Wu, B.:
Reaction-diffusion systems with $p(x)$-growth for image denoising. Nonlinear Anal. RWA, 12, 2011, 2904-2918,
MR 2813233 |
Zbl 1219.35340
[21] Lions, J.: Quelques Methodes de Resolution des Problems aux Limites Non lineaire. 1969, Dunod Editeur Gauthier Villars, Paris,
[22] Liu, C.:
Some properties of solutions for the generalized thin film equation in one space dimension. Boletin de la Asociacion Matematica venezolana, 12, 2005, 43-52,
MR 2192402 |
Zbl 1099.35115
[24] Ruzicka, M.:
Electrorheological Fluids: Modeling and Mathematical Theory. 1748, 2000, Springer-Verlag, Berlin,
MR 1810360 |
Zbl 0968.76531
[28] Zhang, C., Zhou, S.:
A fourth-order degenerate parabolic equation with variable exponent. J. Part. Diff. Eq., 2009, 1-16,
MR 2589555 |
Zbl 1212.35259