[7] Geuzaine, C., Remacle, J.-F.:
Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79 (2009), 1309-1331.
DOI 10.1002/nme.2579 |
MR 2566786 |
Zbl 1176.74181
[10] Heywood, J. G., Rannacher, R.:
Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982), 275-311.
DOI 10.1137/0719018 |
MR 0650052 |
Zbl 0487.76035
[13] Knobloch, P.:
Discrete Friedrich's and Korn's inequalities in two and three dimensions. East-West J. Numer. Math. 4 (1996), 35-51.
MR 1393064 |
Zbl 0854.65098
[14] Knobloch, P.:
Variational crimes in a finite element discretization of 3D Stokes equations with nonstandard boundary conditions. East-West J. Numer. Math. 7 (1999), 133-158.
MR 1699239 |
Zbl 0958.76043
[16] Logg, A., Mardal, K.-A., Wells, G., Editors:
Automated Solution of Differential Equations by the Finite Element Method. The FEniCS Bbook. Lecture Notes in Computational Science and Engineering 84 Springer, Heidelberg (2012).
DOI 10.1007/978-3-642-23099-8 |
MR 3075806 |
Zbl 1247.65105
[19] Stokes, Y., Carey, G.:
On generalized penalty approaches for slip, free surface and related boundary conditions in viscous flow simulation. Int. J. Numer. Meth. Heat and Fluid Flow 21 (2011), 668-702.
DOI 10.1108/09615531111148455
[21] Tabata, M.:
Finite element approximation to infinite Prandtl number Boussinesq equations with temperature-dependent coefficients---Thermal convection problems in a spherical shell. Future Gener. Comput. Syst. 22 521-531 (2006).
DOI 10.1016/j.future.2005.04.008
[23] Tabata, M., Tagami, D.:
Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows. Japan J. Ind. Appl. Math. 17 (2000), 371-389.
DOI 10.1007/BF03167373 |
MR 1794176 |
Zbl 1306.76026