[1] Chen, Y., Cao, L., Sun, M.:
Robust midified function projective synchronization in network with unknown parameters and mismatch parameters. Int. J. Nonlinear Sci. 10 (2010), 17-23.
MR 2721064
[2] Čelikovský, S., Vaněček, A.:
Bilinear systems and chaos. Kybernetika 30 (1994), 403-424.
MR 1303292 |
Zbl 0823.93026
[3] Dumortier, F., Llibre, J., Artes, J. C.:
Qualitative Theory of Planar Differential Systems. Springer, Berlin 2006.
MR 2256001 |
Zbl 1110.34002
[4] Fang, Y. Y., Xu, Z. Y., Cai, C. H.: Melnikov analysis of feedback control of chaotic dynamics system. J. Wuxi University of Light Industry 20 (2001), 624-629.
[7] Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V.:
A simple autonomous quasiperiodic self-oscillator. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681.
DOI 10.1016/j.cnsns.2009.06.027
[8] Li, J. B., Zhao, X. H., Liu, Z. R.: Theory of Generalized Hamiltonian System and its Applications. Science Press, Beijing 2007.
[9] Li, Y., Wu, X. Q., Lu, J. A., Lü, J. H.:
Synchronizability of duplex networks. IEEE Trans. Circuits and Systems II 63 (2016), 206-210.
DOI 10.1109/tcsii.2015.2468924
[10] Liu, K. X., Wu, L. L., Lü, J. H., Zhu, H. H.:
Finite-time adaptive consensus of a class of multi-agent systems. Science China-Technological Sciences 59 (2016), 22-32.
DOI 10.1007/s11431-015-5989-7
[12] Liu, Z. R.: Perturbation Criteria for Chaos. Shanghai Scientific and Technological Education Publishing House, Shanghai 1994.
[15] Mirus, K. A., Sprott, J. C.:
Controlling chaos in a high dimensional systems with periodic parametric perturbations. Phys. Lett. A 254 (1999), 275-278.
DOI 10.1016/s0375-9601(99)00068-7
[16] Mirus, K. A., Sprott, J. C.:
Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. Phys. Rev. E 59 (1999), 5313-5324.
DOI 10.1103/physreve.59.5313
[17] Shen, C. W., Yu, S. M., Chen, G. R.:
Constructing hyperchaotic systems at will. Int. J. Circuit Theory Appl. 43 (2015), 2039-2056.
DOI 10.1002/cta.2062
[19] Tan, S. L., Lü, J. H., Hill, D. J.:
Towards a theoretical framework for analysis and intervention of random drift on general networks. IEEE Trans. Automat. Control 60 (2015), 576-581.
DOI 10.1109/tac.2014.2329235 |
MR 3310190
[20] Tigan, G.:
Analysis of a dynamical system derived from the Lorenz system. Scientific Bull. Politehnica University of Timisoara 50 (2005), 61-72.
MR 2278163 |
Zbl 1107.37039
[21] Wang, Q. X., Yu, S. M., Li, C. Q., Lü, J. H., Fang, X. L., Bahi, J. M.:
Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits and Systems I 63 (2016), 401-412.
DOI 10.1109/tcsi.2016.2515398 |
MR 3488842
[24] Wang, Z.: Passivity control of nonlinear electromechanical transducer chaotic system. Control Theory Appl. 28 (2011), 1036-1040.
[25] Wang, Z., Li, Y. X., Xi, X. J., Lü, L.: Heteoclinic orbit and backstepping control of a 3D chaotic system. Acta Phys. Sin. 60 (2011), 010513.
[31] Wiggins, S., Holmes, P.:
Homiclinic orbits in slowly varying oscillators. SIAM J. Math. Anal. 18 (1987), 612-629.
DOI 10.1137/0518047 |
MR 0883556