Previous |  Up |  Next

Article

Keywords:
average consensus; system abstraction; two-level control; heterogeneous multi-agent system
Summary:
In this paper, a novel two-level framework was proposed and applied to solve the output average consensus problem over heterogeneous multi-agent systems. This approach is mainly based on the recent technique of system abstraction. For given multi-agent systems, we first constructed their abstractions as the upper level and solved their average consensus problem by leveraging well-known results for single integrators. Then the control protocols for physical agents in the lower level were synthesized in a hierarchical way by embedding the designed law for abstractions into an interface between two levels. In this way, the complexity coming from heterogeneous dynamics of agents is totally decoupled from that of the coordination task and the communication topologies. An example was given to show its effectiveness.
References:
[1] Cai, K., Ishii, H.: Average consensus on general strongly connected digraphs. Automatica 48 (2012), 2750-2761. DOI 10.1016/j.automatica.2012.08.003 | MR 2981359 | Zbl 1252.93004
[2] Carli, R., Chiuso, A., Schenato, L., Zampieri, S.: Distributed Kalman filtering based on consensus strategies. IEEE J. Sel. Areas Commun. 26 (2008), 622-633. DOI 10.1109/jsac.2008.080505
[3] Girard, A., Pappas, G.: Hierarchical control system design using approximate simulation. Automatica 45 (2009), 566-571. DOI 10.1016/j.automatica.2008.09.016 | MR 2527359 | Zbl 1158.93301
[4] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. DOI 10.1016/j.automatica.2006.02.013 | MR 2230987 | Zbl 1117.93300
[5] Hristu-Varsakelis, D., Levine, W. S.: Handbook of Networked and Embedded Control Systems. Birkhäuser, Boston 2005. DOI 10.1007/b137198 | MR 2173256 | Zbl 1094.93005
[6] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1387. DOI 10.1016/j.automatica.2010.05.020 | MR 2877254 | Zbl 1204.93011
[7] Huang, J.: Nonlinear Output Regulation: Theory and Applications. SIAM, Philadelphia 2004. DOI 10.1137/1.9780898718683 | MR 2308004 | Zbl 1087.93003
[8] Kia, S. S., Cortés, J., Martinez, S.: Dynamic average consensus under limited control authority and privacy requirements. Int. J. Robust Nonlinear Control 25 (2015), 1941-1966. DOI 10.1002/rnc.3178 | MR 3372271 | Zbl 1328.93022
[9] Khalil, H. K.: Nonlinear Systems. Third Edition. Prentice Hall, New Jersey 2002.
[10] Ma, C., Zhang, J.: Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans. Automat. Control 55 (2010), 1263-1268. DOI 10.1109/tac.2010.2042764 | MR 2642097
[11] Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, New Jersey 2010. DOI 10.1515/9781400835355 | MR 2675288 | Zbl 1203.93001
[12] Olfati-Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. DOI 10.1109/tac.2004.834113 | MR 2086916
[13] Ren, W., Beard, R. W.: Distributed Consensus in Multi-Vehicle Cooperative Control: Theory and Applications. Springer-Verlag, London 2008. DOI 10.1007/978-1-84800-015-5 | Zbl 1144.93002
[14] Rezaee, H., Abdollahi, F.: Average consensus over high-order multiagent systems. IEEE Trans. Automat. Control 60 (2015), 3047-3052 DOI 10.1109/TAC.2015.2408576 | MR 3419597 | Zbl 1360.93506
[15] Scardovi, L., Sepulchre, R.: Synchronization in networks of identical linear systems. Automatica 45 (2013), 2557-2562. DOI 10.1016/j.automatica.2009.07.006 | MR 2889312
[16] Shi, G., Johansson, K. H.: Robust consensus for continuous-time multiagent dynamics. SIAM J. Control Optim. 51 (2013), 3673-3691. DOI 10.1137/110841308 | MR 3106470 | Zbl 1279.93013
[17] Tang, Y.: Output consensus of nonlinear multi-agent systems with unknown control directions. Kybernetika 51 (2015), 335-346. DOI 10.14736/kyb-2015-2-0335 | MR 3350566 | Zbl 1340.93006
[18] Tang, Y., Hong, Y.: Hierarchical distributed control design for multi-agent systems using approximate simulation. Acta Automatica Sinica 39 (2013), 868-874. DOI 10.3724/sp.j.1004.2013.00868 | MR 3154441
[19] Tang, Y., Hong, Y., Wang, X.: Distributed output regulation for a class of nonlinear multi-agent systems with unknown-input leaders. Automatica 62 (2015), 154-160. DOI 10.1016/j.automatica.2015.09.014 | MR 3423983 | Zbl 1330.93018
[20] Tanner, H. G., Jadbabaie, A., Pappas, G. J.: Flocking in fixed and switching networks. IEEE Trans. Automat. Control, 52 (2007), 863-868. DOI 10.1109/tac.2007.895948 | MR 2324246
[21] Wang, X., Han, F.: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772. MR 2850462 | Zbl 1236.93010
[22] Wang, X., Xu, D., Hong, Y.: Consensus control of nonlinear leader-follower multi-agent systems with actuating disturbances. Systems Control Lett. 73 (2014), 58-66. DOI 10.1016/j.sysconle.2014.09.004 | MR 3270955 | Zbl 1297.93018
[23] Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Systems Control Lett. 53 (2004), 65-78. DOI 10.1016/j.sysconle.2004.02.022 | MR 2077189 | Zbl 1157.90347
Partner of
EuDML logo