[1] Banaś, J., Goebel, K.:
Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure Mathematics 60 Marcel Dekker, New York (1980).
MR 0591679 |
Zbl 0441.47056
[3] Caraballo, T., Morillas, F., Valero, J.:
On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete Contin. Dyn. Syst. 34 (2014), 51-77.
DOI 10.3934/dcds.2014.34.51 |
MR 3072985 |
Zbl 1323.34087
[4] Cichoń, M.:
On bounded weak solutions of a nonlinear differential equation in Banach space. Funct. Approximatio Comment. Math. 21 (1992), 27-35.
MR 1296988 |
Zbl 0777.34041
[5] Cichoń, M.:
A point of view on measures of noncompactness. Demonstr. Math. 26 (1993), 767-777.
MR 1265840 |
Zbl 0809.47049
[7] Cichoń, M.:
Trichotomy and bounded solutions of nonlinear differential equations. Math. Bohem. 119 (1994), 275-284.
MR 1305530 |
Zbl 0819.34040
[10] Dawidowski, M., Rzepecki, B.:
On bounded solutions of nonlinear differential equations in Banach spaces. Demonstr. Math. 18 (1985), 91-102.
MR 0816022 |
Zbl 0593.34062
[12] Elaydi, S., Hájek, O.:
Exponential dichotomy and trichotomy of nonlinear diffrerential equations. Differ. Integral Equ. 3 (1990), 1201-1224.
MR 1073067 |
Zbl 0722.34053
[13] Gohberg, I. T., Goldenstein, L. S., Markus, A. S.: Investigation of some properties of bounded linear operators in connection with their $q$-norms. Uchen. Zap. Kishinevskogo Univ. 29 (1957), 29-36 Russian.
[15] Gomaa, A. M.:
Existence solutions for differential equations with delay in Banach spaces. Proc. Math. Phys. Soc. Egypt 84 (2006), 1-12.
MR 2349563
[16] Gomaa, A. M.:
On theorems for weak solutions of nonlinear differential equations with and without delay in Banach spaces. Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 179-191.
MR 2377955 |
Zbl 1182.34080
[17] Gomaa, A. M.:
Existence and topological properties of solution sets for differential inclusions with delay. Commentat. Math. 48 (2008), 45-58.
MR 2440748 |
Zbl 1179.34072
[20] Hille, E., Phillips, R. S.:
Functional Analysis and Semigroups. Colloquium Publications 31, American Mathematical Society, Providence (1957).
MR 0423094 |
Zbl 0078.10004
[21] Ibrahim, A.-G., Gomaa, A. M.:
Strong and weak solutions for differential inclusions with moving constraints in Banach spaces. PU.M.A., Pure Math. Appl. 8 (1997), 53-65.
MR 1490000 |
Zbl 0910.34027
[22] Krzyśka, S., Kubiaczyk, I.:
On bounded pseudo and weak solutions of a nonlinear differential equation in Banach spaces. Demonstr. Math. 32 (1999), 323-330.
MR 1710255 |
Zbl 0954.34050
[23] Kuratowski, K.:
Sur les espaces complets. Fundamenta 15 (1930), 301-309 French \99999JFM99999 56.1124.04.
MR 0028007
[24] Lupa, N., Megan, M.:
Generalized exponential trichotomies for abstract evolution operators on the real line. J. Funct. Spaces Appl. 2013 (2013), Article ID 409049, 8 pages.
DOI 10.1155/2013/409049 |
MR 3111843 |
Zbl 06281050
[26] Massera, J. L., Schäffer, J. J.:
Linear Differential Equations and Function Spaces. Pure and Applied Mathematics 21, Academic Press, New York (1966).
MR 0212324 |
Zbl 0243.34107
[29] Olech, O.:
On the existence and uniqueness of solutions of an ordinary differential equation in the case of Banach space. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 667-673.
MR 0147733 |
Zbl 0173.35303
[33] Sadovski\uı, B. N.:
On a fixed-point principle. Funct. Anal. Appl. 1 (1967), 151-153 translation from Funkts. Anal. Prilozh. 1 1967 74-76.
MR 0211302 |
Zbl 0165.49102
[36] Szep, A.:
Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Stud. Sci. Math. Hung. 6 (1971), 197-203.
MR 0330688 |
Zbl 0238.34100
[37] Szufla, S.:
On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982), 507-515.
MR 0718727 |
Zbl 0532.34045