[8] Cochrane, D., Orcutt, G. H.:
Application of least squares regression to relationhips containing autocorrelated error terms. J. Amer. Statist. Assoc. 44 (1949), 32-61.
DOI 10.1080/01621459.1949.10483290
[9] Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H.: A New Robust Instrumental Variables Estimator.
[10] Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H.:
Natural robustification of the ordinary instrumental variables estimator. Biometrics 69 (2013), 641-650.
DOI 10.1111/biom.12043 |
MR 3106592
[11] Croux, C., Aelst, S. Van, Dehon, C.:
Bounded influence regression using high breakdown scatter matrices. Ann. Inst. Statist. Math. 55 (2013), 265-285.
DOI 10.1007/bf02530499 |
MR 2001864
[12] Davies, P. L.:
Asymptotic behavior of $S$-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. 15 (1987), 1269-1292.
DOI 10.1214/aos/1176350505 |
MR 0902258
[13] (1952), M. Donsker:
Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952), 277-281.
DOI 10.1214/aoms/1177729445 |
MR 0047288
[15] Eicker, F.:
Limit theorems for regression with unequal and dependent errors. In: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability (L. Le Cam and J. Neyman, eds.), University of California Press, Berkeley 1967.
MR 0214223
[18] Field, C. A., (1990), E. M. Ronchetti:
Small Sample Asymptotics. Institute of Mathematical Statistics Monograph Series, Hayward 1990.
MR 1088480
[19] Fisher, R. A.:
A mathematical examination of the methods of determining the accuracy of an observation by the mean error and by the mean squares error. Monthly Notes Royal Astronomical Society 80 (1920), 758-770.
DOI 10.1093/mnras/80.8.758
[20] Fisher, R. A.:
Statistical Methods for Research Workers. Second edition. (1928).
MR 0346954
[21] Galton, F.:
Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. 15 (1886), 246-263.
DOI 10.2307/2841583
[22] Greene, W. H.: Econometric Analysis. Macmillam Press, New York 1993.
[23] Hájek, J., Šidák, Z.:
Theory of Rank Test. Academic Press, New York 1967.
MR 0229351
[25] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.:
Robust Statistics - The Approach Based on Influence Functions. J. Wiley and Sons, New York 1986.
DOI 10.1002/9781118186435 |
MR 0829458
[28] Hausman, J., Newey, W., Voutersen, T., Chao, J., Swanson, N.:
Instrumental variable estimation with heteroscedasticity and many instruments. Quantitative Economics 3 (2012), 211-255.
DOI 10.3982/qe89 |
MR 2957106
[29] Helland, I. S.:
Partial Least Squares Regression and Statistical Models. Scand. J. Statist. 17 (1990), 97-114.
MR 1085924 |
Zbl 0713.62062
[30] Hettmansperger, T. P., Sheather, S. J.:
A cautionary note on the method of least median squares. Amer. Statist. 46 (1992), 79-83.
DOI 10.2307/2684169 |
MR 1165565
[31] Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., Lee, T. C.:
The Theory and Practice of Econometrics. Second edition. J. Wiley and Sons, New York 1985.
MR 1007139
[32] Jurečková, J.:
Regression quantiles and trimmed least squares estimator under a general design. Kybernetika 20 (1984), 345-357.
MR 0776325 |
Zbl 0561.62027
[34] Krasker, W. S.:
Two-stage bounded-influence estimators for simultaneous equations models. J. Business Econom. Statist. 4 (1986), 437-444.
DOI 10.2307/1391499
[35] Krasker, W. S., Welsch, R. E.:
Resistant estimation for simultaneous - equations models using weighted instrumental variables. Econometrica 53 (1985), 1475-1488.
DOI 10.2307/1913223 |
MR 0809921 |
Zbl 0583.62095
[37] Lopuhaa, H. P.:
On the relations between $S$-estimators and $M$-estimatros of multivariate location and covariance. Ann. Statist. 17 (1989), 1662-1683.
DOI 10.1214/aos/1176347386 |
MR 1026304
[39] Maronna, R. A., Yohai, V. J.:
Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers. Zeitschrift fűr Wahrscheinlichkeitstheorie und verwandte Gebiete 58 (1981), 7-20.
DOI 10.1007/bf00536192 |
MR 0635268
[41] Mašíček, L.:
Optimality of the least weighted squares estimator. Kybernetika 40 (2004), 715-734.
MR 2120393 |
Zbl 1245.62013
[45] Popper, K. R.:
The Logic of Scientific Discovery. (Logik der Forscung, Springer, Vienna 1935). Hutchinson and co., New York 1952.
MR 0107593 |
Zbl 1256.03001
[46] Portnoy, S.:
Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time - Series Analysis (J. Franke, W. H\H{a}rdle, and D. Martin, eds.), Springer Verlag, New York 1983, pp. 231-246.
DOI 10.1007/978-1-4615-7821-5_13 |
MR 0786311 |
Zbl 0568.62065
[47] Rao, R. C.:
Estimation of heteroscedastic variances in linear models. J. Amer. Statist. Assoc. 65 (1970), 161-172.
DOI 10.2307/2283583 |
MR 0286221
[53] Rousseeuw, P. J., Yohai, V.:
Robust regressiom by means of $S$-estimators. In: Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle, and R. D. Martin, eds.), Lecture Notes in Statistics 26 Springer Verlag, New York 1984, pp. 256-272.
DOI 10.1007/978-1-4615-7821-5_15 |
MR 0786313
[54] Štěpán, J.: Teorie pravděpodobnosti (Probability Theory). Academia, Praha 1987.
[55] Huffel, S. Van:
Total least squares and error-in-variables modelling: Bridging the gap between statistics, computational mathematics and enginnering. In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica Verlag/Springer, Heidelberg 2004, pp. 539-555.
DOI 10.1007/978-3-7908-2656-2_44 |
MR 2173049
[56] Víšek, J. Á.: A cautionary note on the method of Least Median of Squares reconsidered. In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (P. Lachout, ed.), Academy of Sciences of the Czech Republic, Praha 1994, pp. 254-259.
[57] Víšek, J. Á.: Robust instruments. In: Robust'98 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 1998, pp. 195-224.
[58] Víšek, J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy. In: Proc. Conference Macromodels'99, Wroclaw University 1999, pp. 424-445.
[59] Víšek, J. Á.: Regression with high breakdown point. In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 2000, pp. 324-356.
[60] Víšek, J. Á.: The least weighted squares I. The asymptotic linearity of normal equations. Bull. Czech Econometr. Soc. 9 (2002), 31-58.
[61] Víšek, J. Á.:
The least weighted squares II. Consistency and asymptotic normality. Bull. Czech Econometr. Soc. 9 (2002), 1-28.
MR 2208518
[62] Víšek, J. Á.: Development of the Czech export in nineties. In: Konsolidace vládnutí a podnikání v České republice a v Evropské unii I. Umění vládnout, ekonomika, politika, Matfyzpress, Praha 2003, pp. 193-220.
[64] Víšek, J. Á.:
Instrumental weighted variables - algorithm. In: Proc. COMPSTAT 2006 (A. Rizzi and M. Vichi, eds.), Physica Verlag/Springer, Heidelberg 2006, pp. 777-786.
DOI 10.1007/978-3-7908-1709-6 |
MR 2173224
[65] Víšek, J. Á.: Kolmogorov-Smirnov statistics in multiple regression. In: Proc. ROBUST 2006 (J. Antoch and G. Dohnal, eds.), pp. 367-374.
[67] Víšek, J. Á.:
Robust error - term - scale estimate. In: IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 2010, pp. 254-267.
DOI 10.1007/s10463-007-0159-8 |
MR 2808385
[68] Víšek, J. Á.: Heteroscedasticity resistant robust covariance matrix estimator. Bull. Czech Econometric Society 17 (2010), 33-49.
[69] Víšek, J. Á.:
Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47 (2011), 179-206.
MR 2828572 |
Zbl 1228.62026
[70] Víšek, J. Á.:
Weak $\sqrt{n}$ - consistency of the least weighted squares under heteroscedasticity. Acta Universitatis Carolinae, Mathematica et Physica 2 (2011), 51, 71-82.
MR 2808296 |
Zbl 1228.62026
[72] Víšek, J. Á.:
Robustifying estimation of the model with fixed and random effects. Part I - Theoretical considerations. Part II - Numerical study. Workshop on Algorithm for Outliers/regressors Selection organized by Bent Nielsen, Nuffield College, Oxford 2013. Methodology and Computing in Applied Probability 17 (2014), 4, 999-1014.
DOI 10.1007/s11009-014-9432-5
[74] White, H.:
A heteroskedasticity - consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica 48 (1980), 817-838.
DOI 10.2307/1912934 |
MR 0575027
[75] Wooldridge, J. M.:
Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge 2001. (Second edition 2008.)
MR 2768559 |
Zbl 1327.62009
[76] Wooldridge, J. M.: Introductory Econometrics. A Modern Approach. MIT Press, Cambridge 2006. (Second edition 2009.)