[6] Coddington, E. A., Levinson, N.:
Theory of Ordinary Differential Equations. McGraw-Hill Book Company, New York (1955).
MR 0069338 |
Zbl 0064.33002
[9] Crouzeix, M., Raviart, P.-A.:
Approximation des équations d'évolution linéaires par des méthodes à pas multiples. C. R. Acad. Sci., Paris, Sér. A 283 (1976), 367-370.
MR 0426434 |
Zbl 0361.65064
[12] Dekker, K.: On the iteration error in algebraically stable Runge-Kutta methods. Report NW 138/82, Math. Centrum, Amsterdam (1982).
[14] Ehle, B. L.:
On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems. Thesis (Ph.D)-University of Waterloo, Ontario (1969).
MR 2716012
[16] Gear, C. W.:
Numerical Initial Value Problems in Ordinary Differential Equations. \hbox{Prentice}-Hall, Englewood Cliffs (1971).
MR 0315898 |
Zbl 1145.65316
[23] Henrici, P.:
Discrete Variable Methods in Ordinary Differential Equations. John Wiley and Sons, New York (1962).
MR 0135729 |
Zbl 0112.34901
[28] Padé, H.:
Sur la représentation approchée d'une fonction par des fractions rationnelles. Ann. Sci. Éc. Norm. Supér. (3) 9 (1892), 3-93 \99999JFM99999 24.0360.02.
DOI 10.24033/asens.378 |
MR 1508880
[29] Prothero, A., Robinson, A.:
On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28 (1974), 145-162.
DOI 10.2307/2005822 |
MR 0331793 |
Zbl 0309.65034
[30] Rektorys, K.:
The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications (East European Series) 4, D. Reidel Publishing, Dordrecht; SNTL-Publishers of Technical Literature, Praha (1982).
MR 0689712 |
Zbl 0505.65029
[31] Roskovec, F.: Numerical solution of nonlinear convection-diffusion problems by adaptive methods. Master Thesis (2014), Czech.
[33] Vlasák, M., Dolejší, V., Hájek, J.:
A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems. Numer. Methods Partial Differ. Equations 27 (2011), 1456-1482.
DOI 10.1002/num.20591 |
MR 2838303 |
Zbl 1237.65105
[34] Vlasák, M., Vlasáková, Z.:
Derivation of BDF coefficients for equidistant time step. Programs and Algorithms of Numerical Mathematics 15 Proc. Seminar, Dolní Maxov, Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2010), 221-226.
MR 3203769 |
Zbl 1340.65137
[37] Wright, K.:
Some relationships between implicit Runge-Kutta, collocation Lanczos $\tau$ methods, and their stability properties. BIT, Nord. Tidskr. Inf.-behandl. 10 (1970), 217-227.
DOI 10.1007/BF01936868 |
MR 0266439 |
Zbl 0208.41602