[1] Aaid, D.:
Étude numérique comparative entre des méthodes de résolution d’un problème de transport à quatre indices avec capacités. Thése de l'université de Constantine (2010),
http://bu.umc.edu.dz/theses/math/AAI5587.pdf
[2] Aaid, D., Noui, A., Le Thi, H.A., Zidna, A.:
A modified classical algorithm ALPT4C for solving a capacitated four-index transportation problem. Acta Math. Vietnam. 37 (3) (2012), 379–390.
MR 3027228 |
Zbl 1297.90081
[3] Aaid, D., Noui, A., Ouanes, M.: Piecewise quadratic underestimation for global optimization. JSLAROMAD II Tiziouzou. Algeria, 28 – 30 Octobre 2013 (2013).
[4] Aaid, D., Noui, A., Zidna, A., Ouanes, M.: A quadratic branch and bound with Alienor method for global optimization. MAGO'2014, Málaga, Spain, 1 – 4 September, 2014.
[5] Adjiman, C.S., Androulakis, I.P., Floudas, C.A.:
A global optimization method, alpha BB, for general twice differentiable NLPs – II. Implementation and computational results. Internat. J. Comput. Appl. in Chem. Engrg. 29 (3) (1998), 1159–1179.
DOI 10.1016/S0098-1354(98)00218-X |
MR 1365800
[7] Bendiab, O., Cherruault, Y.:
A new method for global optimization in two dimensions. Int. J. Biomed. Comput. 38 (1) (1995), 71–73.
DOI 10.1016/0020-7101(94)01039-4
[9] Caratzoulas, S., Floudas, C.A.:
A trigonometric convex underestimator for the base functions in Fourier space. J. Optim. Theory Appl. 124 (2) (2005), 336–362.
DOI 10.1007/s10957-004-0940-2 |
MR 2130074
[11] Cherruault, Y., Mora, G.: Optimisation globale : théorie des courbes alpha-denses. Economica Paris, 2005.
[12] Chrysanthos, E., Gounaris, C., Floudas, A.:
Tight convex underestimators for $C^2$-continuous problems. I. Univariate functions. J. Global Optim. 42 (1) (2008).
MR 2425310
[14] Guettal, D., Ziadi, A.:
Reducing transformation and global optimization. Appl. Math. Comput. 218 (2012), 5848–5860.
MR 2873062 |
Zbl 1256.65054
[16] Horst, R., Pardalos, P.M.:
Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht, 1995.
MR 1377081 |
Zbl 0805.00009
[18] Le Thi, H.A., Ouanes, M.:
Convex quadratic underestimation and branch and bound for univariate global optimization with one nonconvex constraint. RAIRO Oper. Res. 40 (2006), 285–302.
DOI 10.1051/ro:2006024 |
MR 2276160 |
Zbl 1180.90249
[19] Lera, D., Sergeyev, Y.D.:
Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23 (1) (2013), 508–529.
DOI 10.1137/110859129 |
MR 3033117 |
Zbl 1270.90049
[21] Noui, A., Aaid, D., Ouanes, M.: An efficient algorithm for the Bernstein polynomial approach to global optimization. JSLAROMAD II, Tiziouzou, Algeria, 2013, 28–30 Octobre 2013.
[22] Ouanes, M.:
A combined descent gradient method and descritization method for convex SIP. Internat. J. Appl. Math. 25 (4) (2012), 503–513.
MR 3113955
[23] Ouanes, M.:
A new approach for nonconvex SIP. Internat. J. Appl. Math. 81 (3) (2012), 479–486.
Zbl 1259.65093
[24] Ouanes, M.:
The main diagonal method in C 1 global optimization problem. Internat. J. Appl. Math. 25 (5) (2012), 663–672.
MR 3086787 |
Zbl 1277.65047
[25] Ouanes, M.:
New underestimator for multivariate global optimization with box costraints. Internat. J. of Pure and Appl. Math. 84 (1) (2013), 73–83.
DOI 10.12732/ijpam.v84i1.5
[26] Ouanes, M., Le Thi, H.A., Trong, P.N., Zidna, A.:
New quadratic lower bound for multivariate functions in global optimization. Math. Comput. Simulation 109 (2015), 197–211.
DOI 10.1016/j.matcom.2014.04.013 |
MR 3282082
[27] Pardalos, P.M., Romeijn, H.E.:
Handbook of Global Optimization, Volume 2. Nonconvex Optimization and Its Applications. Springer, Boston–Dordrecht–London, 2002.
MR 1919528
[29] Rahal, M., Ziadi, A.:
A new extention of Piyavski’s method to holder functions of sveral variables. Appl. Math. Comput. 218 (2012), 478–488.
MR 2400670
[30] Sergeyev, Y.D.:
A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35 (5) (1995), 705–717.
MR 1337015
[32] Shpak, A.:
Global optimization in one-dimensional case using analytically defined derivatives of objective function. Comput. Sci. J. Moldova 3 (8) (1995), 168–184.
MR 1485351 |
Zbl 0896.65046