Previous |  Up |  Next

Article

Keywords:
Lyapunov functional; third-order vector delay differential equation; boundedness; stability
Summary:
This paper investigates the stability of the zero solution and uniformly boundedness and uniformly ultimately boundedness of all solutions of a certain vector differential equation of the third order with delay. Using the Lyapunov–Krasovskiĭ functional approach, we obtain a new result on the topic and give an example for the related illustrations.
References:
[1] Afuwape, A. U.: Ultimate boundedness results for a certain system of third-order nonlinear differential equations. J. Math. Anal. Appl. 97 (1983), 140–150. DOI 10.1016/0022-247X(83)90243-3 | MR 0721235
[2] Afuwape, A. U., Omeike, M. O.: Further ultimate boundedness of solutions of some system of third-order nonlinear ordinary differential equations. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. MR 2124598
[3] Afuwape, A. U., Omeike, M. O.: On the stability and boundedness of solutions of a kind of third order delay differential equations. Applied Mathematics and Computation 200 (2000), 444–451. DOI 10.1016/j.amc.2007.11.037 | MR 2421659
[4] Afuwape, A. U., Carvajal, Y. E.: Stability and ultimate boundedness of solutions of a certain third order nonlinear vector differential equation. J. Nigerian Math. Soc. 31 (2012), 69–80. MR 2807306
[5] Burton, T. A.: Volterra Integral and Differential Equations. 2nd ed., Mathematics in Science and Engineering, Elsevier, New York, 2005. MR 2155102 | Zbl 1075.45001
[6] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Academic Press, Orlando, 1985. MR 0837654 | Zbl 0635.34001
[7] Burton, T. A., Zhang, S.: Unified boundedness, periodicity and stability in ordinary and functional differential equations. Ann. Math. Pura Appl. 145 (1986), 129–158. DOI 10.1007/BF01790540 | MR 0886710 | Zbl 0626.34038
[8] Ezeilo, J. O. C.: n-dimensional extensions of boundedness and stability theorems for some third-order differential equations. J. Math. Anal. Appl. 18 (1967), 395–416. DOI 10.1016/0022-247X(67)90035-2 | MR 0212298 | Zbl 0173.10302
[9] Ezeilo, J. O. C., Tejumola, H. O.: Boundedness and periodicity of solutions of a certain system of third-order nonlinear differential equations. Ann. Math. Pura Appl. 74 (1966), 283–316. DOI 10.1007/BF02416460 | MR 0204787
[10] Ezeilo, J. O. C., Tejumola, H. O.: Further results for a system of third-order ordinary differential equations. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975), 143–151, 283–316. MR 0425261
[11] Graef, J. R., Beldjerd, D., Remili, M.: On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay. PanAmerican Mathematical Journal 25 (2015), 82–94. MR 3364326 | Zbl 1331.34145
[12] Graef, J. R., Oudjedi, D., Remili, M.: Stability and square integrability of solutions of nonlinear third order differential equations. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 22 (2015), 313–324. MR 3405345 | Zbl 1326.34088
[13] Hale, J. K.: Theory of Functional Differential Equations. Springer Verlag, New York, 1977. MR 0508721 | Zbl 0352.34001
[14] Mahmoud, A. M., Tunç, C.: Stability and boundedness of solutions of a certain n-dimensional nonlinear delay differential system of third-order. Adv. Pure Appl. Math. 7, 1 (2016), 1–11. MR 3441085 | Zbl 1352.34099
[15] Meng, F. W.: Ultimate boundedness results for a certain system of third-order nonlinear differential equations. J. Math. Anal. Appl. 177 (1993), 496–509. DOI 10.1006/jmaa.1993.1273 | MR 1231497
[16] Omeike, M. O.: Stability and boundedness of solutions of a certain system of third-order nonlinear delay differential equations. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 54, 1 (2015), 109–119. MR 3468604 | Zbl 1351.34086
[17] Remili, M., Beldjerd, D.: On the asymptotic behavior of the solutions of third order delay differential equations. Rend. Circ. Mat. Palermo, 63, 3 (2014), 447–455. DOI 10.1007/s12215-014-0169-3 | MR 3298595 | Zbl 1321.34097
[18] Remili, M., Oudjedi, D. L.: Stability and boundedness of the solutions of non autonomous third order differential equations with delay. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 53, 2 (2014), 139–147. MR 3331011
[19] Remili, M., Oudjedi, D. L.: Uniform stability and boundedness of a kind of third order delay differential equations. Bull. Comput. Appl. Math., 2, 1 (2014), 25–35. MR 3569688
[20] Sadek, A. I.: Stability and boundedness of a kind of third-order delay differential system. Applied Mathematics Letters, 16 (2003), 657–662. DOI 10.1016/S0893-9659(03)00063-6 | MR 1986031 | Zbl 1056.34078
[21] Sadek, A. I.: On the stability of solutions of certain fourth order delay differential equations. Applied Mathematics and Computation, 148 (2004), 587–597. DOI 10.1016/S0096-3003(02)00925-6 | MR 2015393 | Zbl 1047.34089
[22] Tiryaki, A.: Boundedness and periodicity results for a certain system of third-order nonlinear differential equations. Indian J. Pure Appl. Math., 30, 4 (1999), 361–372. MR 1695688 | Zbl 0936.34041
[23] Tunç, C., Gozen, M.: Convergence of solutions to a certain vector differential equation of third order. Abstract and Applied Analysis, 2014, ID 424512 (2014), 1–6. DOI 10.1155/2014/424512 | MR 3176743
[24] Tunç, C.: On the boundedness of solutions of certain nonlinear vector differential equations of third order. Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 49(97), 3 (2006), 291–300. MR 2267128 | Zbl 1174.34034
[25] Tunç, C.: On the stability and boundedness of solutions of nonlinear vector differential equations of third order. Nonlinear Anal., 70, 6 (2009), 2232–2236. DOI 10.1016/j.na.2008.03.002 | MR 2498299 | Zbl 1162.34043
[26] Tunç, C.: On the qualitative properties of differential equations of third order with retarded argument. Proyecciones, 33, 3 (2014), 325–347. DOI 10.4067/S0716-09172014000300007 | MR 3258732 | Zbl 1310.34094
[27] Tunç, C.: New ultimate boundedness and periodicity results for certain third-order nonlinear vector differential equations. Math. J. Okayama Univ., 48 (2006), 159–172. MR 2291176 | Zbl 1138.34322
[28] Yoshizawa, T.: Stability Theory by Liapunov’s Second Method. The Mathematical Society of Japan, Tokyo, 1996. MR 0208086
[29] Zhu, Y.: On stability, boundedness and existence of periodic solution of a kind of thirdorder nonlinear delay differential system. Ann. Diff. Eqns., 8, 2 (1992), 249–259. MR 1190138
Partner of
EuDML logo