[1] Bagewadi, C. S., Venkatesha, A.:
Some curvature tensors on a trans-Sasakian manifold. Turk. J. Math. 31 (2007), 111–121.
MR 2335656 |
Zbl 1138.53028
[2] Blair, D. E.:
Contact Manifolds in Riemannian Geometry. Lecture Note in Mathematics 509, Springer-Verlag, Berlin–New York, 1976.
MR 0467588 |
Zbl 0319.53026
[3] Blair, D. E.:
Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston, 2002
MR 1874240 |
Zbl 1011.53001
[6] Chinea, D., Gonzales, C.:
A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. 156, 4 (1990), 15–36.
DOI 10.1007/BF01766972 |
MR 1080209
[7] Chinea, D., Gonzales, C.:
Curvature relations in trans-sasakian manifolds. In: Proceedings of the XIIth Portuguese–Spanish Conference on Mathematics II, Braga, 1987, Univ. Minho, Braga, 1987, 564–571.
MR 1139218
[9] De, U. C., Sarkar, A.:
On three-dimensional trans-Sasakian manifolds. Extracta Mathematicae 23, 3 (2008), 265–277.
MR 2524542 |
Zbl 1175.53058
[10] De, U. C., Tripathi, M. M.:
Ricci tensor in 3-dimensional trans-Sasakian manifolds. Kyungpook Math. J. 43, 2 (2003), 247–255.
MR 1982228 |
Zbl 1073.53060
[14] Kowalski, O.:
An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y ).R = 0$. Czechoslovak Math. J. 46(121) (1996), 427–474.
MR 1408298
[16] Marrero, J. C., Chinea, D.:
On trans-sasakian manifolds. In: Proceedings of the XIVth Spanish–Portuguese Conference on Mathematics I-III, Puerto de la Cruz, 1989, Univ.La Laguna, La Laguna, 1990, 655–659.
MR 1112951
[17] Mikeš, J.:
On Sasaki spaces and equidistant Kähler spaces. Sov. Math., Dokl. 34 (1987), 428–431.
MR 0819428 |
Zbl 0631.53018
[18] Mikeš, J.:
Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015.
MR 3442960 |
Zbl 1337.53001
[19] Mikeš, J., Starko, G. A.:
On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. Ukr. Geom. Sb. 32 (1989), 92–98.
MR 1049372 |
Zbl 0711.53042
[20] Mishra, R. S.: Structures on Differentiable Manifold and Their Applications. Chandrama Prakasana, Allahabad, 1984.
[21] Oubina, J. A.:
New classes of almost contact metric structures. Publ. Math. Debrecen 32, 3-4 (1985), 187–193.
MR 0834769 |
Zbl 0611.53032
[22] Ozgur, C.:
$\phi $-conformally flat Lorentzian Para-Sasakian manifolds. Radovi Matematicki 12 (2003), 99–106.
MR 2022248
[23] Shukla, S. S., Singh, D. D.:
On $\epsilon $-trans-sasakian manifolds. Int. J. Math. Anal. 49 (2010), 2401–2414.
MR 2770033
[24] Sinyukov, N. S.:
Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979.
Zbl 0637.53020
[26] Yano, K., Bochner, S.:
Curvature and Betti Numbers. Annals of Math. Studies 32, Princeton Univ. Press, Princeton, 1953.
MR 0062505 |
Zbl 0051.39402
[27] Yano, K., Kon, M.:
Structure on Manifolds. Series in Math. 3, World Scientific, Singapore, 1984.
MR 0794310
[28] Zhen, G., Cabrerizo, J. L., Fernandez, L. M., Fernandez, M.:
On $\xi $-conformally flat contact metric manifolds. Indian J. Pure Appl. Math. 28 (1997), 725–734.
MR 1461184 |
Zbl 0882.53031