Previous |  Up |  Next

Article

Keywords:
Trans-Sasakian manifold; $\xi $-projectively flat; $\phi $-projectively flat; Einstein manifold
Summary:
The object of the present paper is to study $\xi $-projectively flat and $\phi $-projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.
References:
[1] Bagewadi, C. S., Venkatesha, A.: Some curvature tensors on a trans-Sasakian manifold. Turk. J. Math. 31 (2007), 111–121. MR 2335656 | Zbl 1138.53028
[2] Blair, D. E.: Contact Manifolds in Riemannian Geometry. Lecture Note in Mathematics 509, Springer-Verlag, Berlin–New York, 1976. MR 0467588 | Zbl 0319.53026
[3] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics 203, Birkhäuser, Boston, 2002 MR 1874240 | Zbl 1011.53001
[4] Blair, D. E., Oubina, J. A.: Conformal and related changes of metric on the product of two almost contact metric manifolds. Publ. Mat. 34, 1 (1990), 199–207. DOI 10.5565/PUBLMAT_34190_15 | MR 1059874 | Zbl 0721.53035
[5] Cabrerizo, J. L., Fernandez, L. M., Fernandez, M., Zhen, G.: The structure of a class of K-contact manifolds. Acta Math. Hungar. 82, 4 (1999), 331–340. DOI 10.1023/A:1006696410826 | MR 1675621 | Zbl 0924.53024
[6] Chinea, D., Gonzales, C.: A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. 156, 4 (1990), 15–36. DOI 10.1007/BF01766972 | MR 1080209
[7] Chinea, D., Gonzales, C.: Curvature relations in trans-sasakian manifolds. In: Proceedings of the XIIth Portuguese–Spanish Conference on Mathematics II, Braga, 1987, Univ. Minho, Braga, 1987, 564–571. MR 1139218
[8] De, U. C., De, K.: On a class of three- dimensional Trans-Sasakian manifold. Commun. Korean Math. Soc. 27 (2012), 795–808. DOI 10.4134/CKMS.2012.27.4.795 | MR 3025885
[9] De, U. C., Sarkar, A.: On three-dimensional trans-Sasakian manifolds. Extracta Mathematicae 23, 3 (2008), 265–277. MR 2524542 | Zbl 1175.53058
[10] De, U. C., Tripathi, M. M.: Ricci tensor in 3-dimensional trans-Sasakian manifolds. Kyungpook Math. J. 43, 2 (2003), 247–255. MR 1982228 | Zbl 1073.53060
[11] Gray, A., Hervella, L. M.: The sixteen classes of almost hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 123, 4 (1980), 35–58. DOI 10.1007/BF01796539 | MR 0581924 | Zbl 0444.53032
[12] Janssens, D., Vanhecke, L.: Almost contact structures and curvature tensors. Kodai Math. J. 4 (1981), 1–27. DOI 10.2996/kmj/1138036310 | MR 0615665 | Zbl 0472.53043
[13] Kim, J. S., Prasad, R., Tripathi, M. M.: On generalized ricci- recurrent trans- sasakian manifolds. J. Korean Math. Soc. 39 (2002), 953–961. DOI 10.4134/JKMS.2002.39.6.953 | MR 1932790 | Zbl 1025.53023
[14] Kowalski, O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X, Y ).R = 0$. Czechoslovak Math. J. 46(121) (1996), 427–474. MR 1408298
[15] Marrero, J. C.: The local structure of trans-sasakian manifolds. Ann. Mat. Pura Appl. 162, 4 (1992), 77–86. DOI 10.1007/BF01760000 | MR 1199647 | Zbl 0772.53036
[16] Marrero, J. C., Chinea, D.: On trans-sasakian manifolds. In: Proceedings of the XIVth Spanish–Portuguese Conference on Mathematics I-III, Puerto de la Cruz, 1989, Univ.La Laguna, La Laguna, 1990, 655–659. MR 1112951
[17] Mikeš, J.: On Sasaki spaces and equidistant Kähler spaces. Sov. Math., Dokl. 34 (1987), 428–431. MR 0819428 | Zbl 0631.53018
[18] Mikeš, J.: Differential Geometry of Special Mappings. Palacky Univ. Press, Olomouc, 2015. MR 3442960 | Zbl 1337.53001
[19] Mikeš, J., Starko, G. A.: On hyperbolically Sasakian and equidistant hyperbolically Kählerian spaces. Ukr. Geom. Sb. 32 (1989), 92–98. MR 1049372 | Zbl 0711.53042
[20] Mishra, R. S.: Structures on Differentiable Manifold and Their Applications. Chandrama Prakasana, Allahabad, 1984.
[21] Oubina, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen 32, 3-4 (1985), 187–193. MR 0834769 | Zbl 0611.53032
[22] Ozgur, C.: $\phi $-conformally flat Lorentzian Para-Sasakian manifolds. Radovi Matematicki 12 (2003), 99–106. MR 2022248
[23] Shukla, S. S., Singh, D. D.: On $\epsilon $-trans-sasakian manifolds. Int. J. Math. Anal. 49 (2010), 2401–2414. MR 2770033
[24] Sinyukov, N. S.: Geodesic Mappings of Riemannian Spaces. Nauka, Moscow, 1979. Zbl 0637.53020
[25] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X, Y ).R = 0$. J. Diff. Geom. 17 (1982), 531–582. DOI 10.4310/jdg/1214437486 | MR 0683165 | Zbl 0508.53025
[26] Yano, K., Bochner, S.: Curvature and Betti Numbers. Annals of Math. Studies 32, Princeton Univ. Press, Princeton, 1953. MR 0062505 | Zbl 0051.39402
[27] Yano, K., Kon, M.: Structure on Manifolds. Series in Math. 3, World Scientific, Singapore, 1984. MR 0794310
[28] Zhen, G., Cabrerizo, J. L., Fernandez, L. M., Fernandez, M.: On $\xi $-conformally flat contact metric manifolds. Indian J. Pure Appl. Math. 28 (1997), 725–734. MR 1461184 | Zbl 0882.53031
Partner of
EuDML logo