Title:
|
On the $q$-Pell sequences and sums of tails (English) |
Author:
|
Patkowski, Alexander E. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
279-288 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We examine the $q$-Pell sequences and their applications to weighted partition theorems and values of $L$-functions. We also put them into perspective with sums of tails. It is shown that there is a deeper structure between two-variable generalizations of Rogers-Ramanujan identities and sums of tails, by offering examples of an operator equation considered in a paper published by the present author. The paper starts with the classical example offered by Ramanujan and studied by previous authors noted in the introduction. Showing that simple combinatorial manipulations give rise to an identity published by the present author, a weighted form of a Lebesgue partition theorem is given as the main application to partitions. The conclusion of the paper summarizes some directions for further research, pointing out that certain conditions on the $q$-polynomial would be desired, and also possibly looking at the operator equation in the present paper from the position of using modular forms. (English) |
Keyword:
|
sum of tails |
Keyword:
|
$q$-series |
Keyword:
|
partition |
Keyword:
|
$L$-function |
MSC:
|
05A17 |
MSC:
|
11P81 |
idZBL:
|
Zbl 06738518 |
idMR:
|
MR3633012 |
DOI:
|
10.21136/CMJ.2017.0550-15 |
. |
Date available:
|
2017-03-13T12:12:02Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146054 |
. |
Reference:
|
[1] Andrews, G. E.: $q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra.CBMS, Reg. Conf. Ser. Math. 66, American Mathematical Society, Providence (1986). Zbl 0594.33001, MR 0858826, 10.1090/cbms/066 |
Reference:
|
[2] Andrews, G. E.: Mock theta functions.Theta functions L. Ehrenpreis, R. Gunning Bowdoin 1987, Proc. Symp. Pure Math., 49, Part 2, American Mathematical Society, Providence (1989), 283-298. Zbl 0678.05004, MR 1013178, 10.1090/pspum/049.2/1013178 |
Reference:
|
[3] Andrews, G. E.: Partitions with distinct evens.Advances in Combinatorial Mathematics. Proc. 2nd Waterloo Workshop in Computer Algebra, 2008 I. S. Kotsireas et al Springer, Berlin (2009), 31-37. Zbl 1182.05008, MR 2683225, 10.1007/978-3-642-03562-3_2 |
Reference:
|
[4] Andrews, G. E., Berndt, B. C.: Ramanujan's Lost Notebook. Part II.Springer, New York (2009). Zbl 1180.11001, MR 2474043, 10.1007/978-1-4614-3810-6 |
Reference:
|
[5] Andrews, G. E., Dyson, F. J., Hickerson, D.: Partitions and indefinite quadratic forms.Invent. Math. 91 (1988), 391-407. Zbl 0642.10012, MR 0928489, 10.1007/BF01388778 |
Reference:
|
[6] Andrews, G. E., Jimenez-Urroz, J., Ono, K.: $q$-series identities and values of certain $L$-functions.Duke Math. J. 108 (2001), 395-419. Zbl 1005.11048, MR 1838657, 10.1215/S0012-7094-01-10831-4 |
Reference:
|
[7] Bringmann, K., Kane, B.: New identities involving sums of the tails related to real quadratic fields.Ramanujan J. 23 (2010), 243-251. Zbl 1226.11108, MR 2739215, 10.1007/s11139-009-9178-9 |
Reference:
|
[8] Bringmann, K., Kane, B.: Multiplicative $q$-hypergeometric series arising from real quadratic fields.Trans. Am. Math. Soc. 363 (2011), 2191-2209. Zbl 1228.11157, MR 2746680, 10.1090/S0002-9947-2010-05214-6 |
Reference:
|
[9] Chen, W. Y. C., Ji, K. Q.: Weighted forms of Euler's theorem.J. Comb. Theory, Ser. A 114 (2007), 360-372. Zbl 1110.05011, MR 2293097, 10.1016/j.jcta.2006.06.005 |
Reference:
|
[10] Cohen, H.: $q$-identities for Maass waveforms.Invent. Math. 91 (1988), 409-422. Zbl 0642.10013, MR 0928490, 10.1007/BF01388779 |
Reference:
|
[11] Corson, D., Favero, D., Liesinger, K., Zubairy, S.: Characters and $q$-series in $\mathbb{Q}(\sqrt{2})$.J. Number Theory 107 (2004), 392-405. Zbl 1056.11056, MR 2072397, 10.1016/j.jnt.2004.03.002 |
Reference:
|
[12] Fine, N. J.: Basic Hypergeometric Series and Applications. With a Foreword by George E. Andrews.Mathematical Surveys and Monographs 27, American Mathematical Society, Providence (1988). Zbl 0647.05004, MR 0956465, 10.1090/surv/027 |
Reference:
|
[13] Lebesgue, V. A.: Sommation de quelques series.J. Math. Pure. Appl. 5 (1840), 42-71. |
Reference:
|
[14] Li, Y., Ngo, H. T., Rhoades, R. C.: Renormalization and quantum modular forms, part II: Mock theta functions.Available at arXiv:1311.3044 [math.NT]. |
Reference:
|
[15] Lovejoy, J.: Overpartitions and real quadratic fields.J. Number Theory 106 (2004), 178-186. Zbl 1050.11085, MR 2049600, 10.1016/j.jnt.2003.12.014 |
Reference:
|
[16] Lovejoy, J.: Overpartition pairs.Ann. Inst. Fourier (Grenoble) 56 (2006), 781-794. Zbl 1147.11061, MR 2244229, 10.5802/aif.2199 |
Reference:
|
[17] Patkowski, A. E.: A note on the rank parity function.Discrete Math. 310 (2010), 961-965. Zbl 1228.11158, MR 2574849, 10.1016/j.disc.2009.10.001 |
Reference:
|
[18] Patkowski, A. E.: An observation on the extension of Abel's lemma.Integers 10 (2010), 793-800. Zbl 1216.11026, MR 2797784, 10.1515/integ.2010.056 |
Reference:
|
[19] Patkowski, A. E.: More generating functions for values of certain $L$-functions.J. Comb. Number Theory 2 (2010), 160-170. Zbl 1319.11056, MR 2907788 |
Reference:
|
[20] Patkowski, A. E.: On curious generating functions for values of $L$-functions.Int. J. Number Theory 6 1531-1540 (2010). Zbl 1233.11090, MR 2740720, 10.1142/S1793042110003630 |
Reference:
|
[21] Santos, J. P. O., Sills, A. V.: $q$-Pell sequences and two identities of V. A. Lebesgue.Discrete Math. 257 (2002), 125-142. Zbl 1007.05017, MR 1931496, 10.1016/S0012-365X(01)00475-7 |
. |